RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      준 지도식 GAN을 이용한 와이파이 전자지문 기반 실내 위치 인식 = Semi-supervised Generative Adversarial Network for Wi-Fi Fingerprint Based Indoor Location Awareness

      한글로보기

      https://www.riss.kr/link?id=A107148803

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Indoor positioning systems are attracting increasing attention due to the demand for accurate location awareness in areas where the Global Navigation Satellite System (GNSS) does not work. The Wi-Fi access points (APs) built in to many constructions can be used to develop a Wi-Fi-fingerprint-based indoor localization method. However, such a localization method needs large amounts of fingerprint data samples to achieve superior positioning performance, which increases the costs of data collection and calibration. To reduce these resource requirements, in this paper, we propose a new semi-supervised generative adversarial network (GAN) approach that can learn an accurate positioning model by using only a small number of training samples. The proposed semi-supervised GAN is extended from a general unsupervised GAN in a way to generate fake labeled samples and to involve a classification model for realizing localization without employing an additional positioning mechanism. Based on the results of indoor experiments conducted in multi-story buildings, the proposed method outperformed a supervised deep-learning-based localization method when room-size landmark positioning was conducted.
      번역하기

      Indoor positioning systems are attracting increasing attention due to the demand for accurate location awareness in areas where the Global Navigation Satellite System (GNSS) does not work. The Wi-Fi access points (APs) built in to many constructions c...

      Indoor positioning systems are attracting increasing attention due to the demand for accurate location awareness in areas where the Global Navigation Satellite System (GNSS) does not work. The Wi-Fi access points (APs) built in to many constructions can be used to develop a Wi-Fi-fingerprint-based indoor localization method. However, such a localization method needs large amounts of fingerprint data samples to achieve superior positioning performance, which increases the costs of data collection and calibration. To reduce these resource requirements, in this paper, we propose a new semi-supervised generative adversarial network (GAN) approach that can learn an accurate positioning model by using only a small number of training samples. The proposed semi-supervised GAN is extended from a general unsupervised GAN in a way to generate fake labeled samples and to involve a classification model for realizing localization without employing an additional positioning mechanism. Based on the results of indoor experiments conducted in multi-story buildings, the proposed method outperformed a supervised deep-learning-based localization method when room-size landmark positioning was conducted.

      더보기

      참고문헌 (Reference)

      1 김예준, "적응형 키프레임 문턱값 기반 영상-관성 오도메트리" 제어·로봇·시스템학회 26 (26): 747-753, 2020

      2 조성윤, "와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터" 제어·로봇·시스템학회 21 (21): 684-690, 2015

      3 "https://www.tensorflow.org/"

      4 J. H. Yoo, "WiFi RSS-based loop closure for indoor localization using smartphone" 2015

      5 M. Abbas, "WiDeep: WiFi-based accurate and robust indoor localization system using deep learning" 1-10, 2019

      6 M. Arjovsky, "Wasserstein gan"

      7 M. Nabati, "Using synthetic data to enhance the accuracy of fingerprint-based localization: a deep learning approach" 4 (4): 2020

      8 J. Yoo, "Time-series Laplacian semi-supervised learning for indoor localization" 19 (19): 2019

      9 A. Odena, "Semi-supervised learning with generative adversarial networks"

      10 K. M. Chen, "Semi-supervised learning with gans for device-free fingerprinting indoor localization"

      1 김예준, "적응형 키프레임 문턱값 기반 영상-관성 오도메트리" 제어·로봇·시스템학회 26 (26): 747-753, 2020

      2 조성윤, "와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터" 제어·로봇·시스템학회 21 (21): 684-690, 2015

      3 "https://www.tensorflow.org/"

      4 J. H. Yoo, "WiFi RSS-based loop closure for indoor localization using smartphone" 2015

      5 M. Abbas, "WiDeep: WiFi-based accurate and robust indoor localization system using deep learning" 1-10, 2019

      6 M. Arjovsky, "Wasserstein gan"

      7 M. Nabati, "Using synthetic data to enhance the accuracy of fingerprint-based localization: a deep learning approach" 4 (4): 2020

      8 J. Yoo, "Time-series Laplacian semi-supervised learning for indoor localization" 19 (19): 2019

      9 A. Odena, "Semi-supervised learning with generative adversarial networks"

      10 K. M. Chen, "Semi-supervised learning with gans for device-free fingerprinting indoor localization"

      11 H. Zhang, "Selfattention generative adversarial networks" 2019

      12 A. Belmonte-Hern´andez, "Recurrent model for wireless indoor tracking and positioning recovering using generative networks" 20 (20): 3356-3365, 2019

      13 F. Gu, "Landmark Graph-based indoor localization" 7 (7): 8343-8355, 2020

      14 J. H. Yoo, "Indoor localization without a prior map by trajectory learning from crowdsourced measurements" 66 (66): 2825-2835, 2017

      15 박소영, "Hidden Markov Model을 이용한 스마트폰 다중 동작에서의 보행 항법 이동방향 개선 알고리즘" 제어·로봇·시스템학회 26 (26): 754-759, 2020

      16 임덕원, "GPS 전파교란원 위치 추정을 위한 TDOA/AOA 복합 기법 설계" 제어·로봇·시스템학회 20 (20): 101-105, 2014

      17 J. H. Yoo, "Feature representation of Wi-Fi signal strength for indoor location awareness" 1498-1502, 2019

      18 X. Jiang, "FSELM : fusion semi-supervised extreme learning machine for indoor localization with Wi-Fi and Bluetooth fingerprints" 22 : 3621-3635, 2018

      19 R. Zhou, "Device-free presence detection and localization with SVM and CSI fingerprinting" 17 (17): 7990-7999, 2017

      20 X. Wang, "CSI-based fingerprinting for indoor localization : A deep learning approach" 66 (66): 763-776, 2017

      21 J. Liu, "AutLoc: deep autoencoder for indoor localization with RSS fingerprinting" 1-6, 2018

      22 김아솔, "AP 상대위치 정보를 고려한 향상된 WLAN RSSI 기반 실내 측위 알고리즘" 제어·로봇·시스템학회 19 (19): 146-151, 2013

      23 Q. Li, "AFDCGAN: Amplitude Feature Deep Convolutional GAN for fingerprint construction in indoor localization systems" 2019

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-02 학술지명변경 한글명 : 제어.자동화.시스템공학 논문지 -> 제어.로봇.시스템학회 논문지
      외국어명 : Journal of Control, Automation and Systems Engineering -> Journal of Institute of Control, Robotics and Systems
      KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.69 0.69 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.39 0.509 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼