암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A106028690
2019
Korean
KCI등재
학술저널
9-17(9쪽)
0
0
상세조회0
다운로드국문 초록 (Abstract)
암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB...
암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB1)를 extracellular space로 방출하는 것으로 알려져 있다. 방출된 HMGB1은 tumor-promoting cytokine으로 작용함으로써 tumor development 시 inflammation, metabolism 및 metastasis에 기여한다. 본 연구에서 non-invasive breast cancer cells MCF-7이 solid tumor의 in vitro model인 multicellular tumor spheroid (MTS) 배양을 통해 완전한 구형의 MTS를 형성하며 MTS가 성장함에 따라 inner region에 necrosis가 유도됨을 밝혔다. 또한 MCF-7 세포의 MTS 배양은 Snail 의존적으로 epithelial-mesenchymal transition (EMT)를 유도함을 관찰하였다. HMGB1의 cell surface receptors인 RAGE, TLR2, TLR4 발현이 MTS 배양에 의해 증가됨을 발견하였다. RAGE, TLR2, TLR4 를 knockdown한 결과 MTS 성장을 억제할 뿐만 아니라 MTS에 의해 증가되는 Snail 발현을 억제함을 밝혔다. 이는 MTS-induced Snail 발현이 RAGE/TLR2/TLR4의존적으로 조절되며 RAGE/TLR2/TLR4-Snail이 MTS 성장에 관여하는 것으로 보인다. 또한 Snail, RAGE, TLR2, TLR4 shRNA는 MTS 배양에 의해 유도되는 EMT를 억제함을 밝혔다. 실제 인간 암조직에서 정상조직에 비해 RAGE, TLR2, TLR4 유전자의 발현이 높음을 관찰하였다. 따라서 HMGB1이 RAGE/TLR2/4-Snail axis를 통해 MTS 배양에 따른 성장 및 EMT에 중요하게 작용할 것으로 예상된다.
다국어 초록 (Multilingual Abstract)
As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic...
As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.
참고문헌 (Reference)
1 Matoba, S., "p53 regulates mitochondrial respiration" 312 : 1650-1653, 2006
2 Lee, S. Y., "Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism" 72 : 3607-3617, 2012
3 Gatenby, R. A., "Why do cancers have high aerobic glycolysis?" 4 : 891-899, 2004
4 Vander Heiden, M. G., "Understanding the Warburg effect : the metabolic requirements of cell proliferation" 324 : 1029-1033, 2009
5 Bald, T., "Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma" 507 : 109-113, 2014
6 Fukata, M., "Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors" 133 : 1869-1881, 2007
7 He, M., "The role of the receptor for advanced glycation end-products in lung fibrosis" 293 : L1427-L1436, 2007
8 Kondo, Y., "The role of autophagy in cancer development and response to therapy" 5 : 726-734, 2005
9 Chen, R. C., "The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines" 390 : 271-280, 2014
10 Kang, R., "The receptor for advanced glycation end products(RAGE)sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival" 17 : 666-676, 2010
1 Matoba, S., "p53 regulates mitochondrial respiration" 312 : 1650-1653, 2006
2 Lee, S. Y., "Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism" 72 : 3607-3617, 2012
3 Gatenby, R. A., "Why do cancers have high aerobic glycolysis?" 4 : 891-899, 2004
4 Vander Heiden, M. G., "Understanding the Warburg effect : the metabolic requirements of cell proliferation" 324 : 1029-1033, 2009
5 Bald, T., "Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma" 507 : 109-113, 2014
6 Fukata, M., "Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors" 133 : 1869-1881, 2007
7 He, M., "The role of the receptor for advanced glycation end-products in lung fibrosis" 293 : L1427-L1436, 2007
8 Kondo, Y., "The role of autophagy in cancer development and response to therapy" 5 : 726-734, 2005
9 Chen, R. C., "The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines" 390 : 271-280, 2014
10 Kang, R., "The receptor for advanced glycation end products(RAGE)sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival" 17 : 666-676, 2010
11 Conti, L., "The noninflammatory role of high mobility group box 1/Tolllike receptor 2 axis in the self-renewal of mammary cancer stem cells" 27 : 4731-4744, 2013
12 Dang, C. V., "The interplay between MYC and HIF in cancer" 8 : 51-56, 2008
13 DeBerardinis, R. J., "The biology of cancer : metabolic reprogramming fuels cell growth and proliferation" 7 : 11-20, 2008
14 Kang, R., "The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics" 33 : 567-577, 2014
15 Hua, D., "Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity" 46 : 2876-2884, 2009
16 Tye, H., "STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation" 22 : 466-478, 2012
17 Kunjithapatham, R., "Reversal of anchorage-independent multicellular spheroid into a monolayer mimics a metastatic model" 4 : 6816-, 2014
18 Scaffidi, P., "Release of chromatin protein HMGB1 by necrotic cells triggers inflammation" 418 : 191-195, 2002
19 De Craene, B., "Regulatory networks defining EMT during cancer initiation and progression" 13 : 97-110, 2013
20 Lee, S. Y., "Regulation of Tumor Progression by Programmed Necrosis" 2018 : 3537471-, 2018
21 Rouhiainen, A., "RAGE-mediated cell signaling" 963 : 239-263, 2013
22 Yu, L. X., "Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein" 5 : 5256-, 2014
23 Liu, A., "Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion" 7 : e35379-, 2012
24 Zong, W. X., "Necrotic death as a cell fate" 20 : 1-15, 2006
25 Lamouille, S., "Molecular mechanisms of epithelial-mesenchymal transition" 15 : 178-196, 2014
26 Sabharwal, S. S., "Mitochondrial ROS in cancer : initiators, amplifiers or an Achilles' heel?" 14 : 709-721, 2014
27 Guo, Z. S., "Life after death : targeting high mobility group box 1 in emergent cancer therapies" 3 : 1-20, 2013
28 Vakkila, J., "Inflammation and necrosis promote tumour growth" 4 : 641-648, 2004
29 Kim, C. H., "Implication of snail in metabolic stress-induced necrosis" 6 : e18000-, 2011
30 Denko, N. C, "Hypoxia, HIF1 and glucose metabolism in the solid tumour" 8 : 705-713, 2008
31 Hielscher, A., "Hypoxia and free radicals : role in tumor progression and the use of engineering-based platforms to address these relationships" 79 : 281-291, 2015
32 Marin-Hernandez, A., "Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic HeLa cell cultures and microspheroids" 232 : 1346-1359, 2016
33 Lee, S. Y., "Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis" 10 : 113-, 2011
34 Lynch, J., "High-mobility group box protein 1 : a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition" 32 : 590-602, 2010
35 Lotze, M. T., "High-mobility group box 1 protein(HMGB1) : nuclear weapon in the immune arsenal" 5 : 331-342, 2005
36 Yan, W., "High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases" 55 : 1863-1875, 2012
37 Zhu, L., "High-mobility group box 1 : a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma" 357 : 527-534, 2015
38 Kang, R., "HMGB1 in cancer : good, bad, or both?" 19 : 4046-4057, 2013
39 Sims, G. P., "HMGB1 and RAGE in inflammation and cancer" 28 : 367-388, 2010
40 Zhang, H., "HIF-1inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity" 11 : 407-420, 2007
41 Kim, J. W., "HIF-1-mediated expression of pyruvate dehydrogenase kinase : a metabolic switch required for cellular adaptation to hypoxia" 3 : 177-185, 2006
42 Fukuda, R., "HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells" 129 : 111-122, 2007
43 Papandreou, I., "HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption" 3 : 187-197, 2006
44 Palumbo, R., "Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation" 164 : 441-449, 2004
45 Tsai, J. H., "Epithelial-mesenchymal plasticity in carcinoma metastasis" 27 : 2192-2206, 2013
46 Ivascu, A., "Diversity of cell-mediated adhesions in breast cancer spheroids" 31 : 1403-1413, 2007
47 Edinger, A. L., "Death by design : apoptosis, necrosis and autophagy" 16 : 663-669, 2004
48 Thiery, J. P., "Complex networks orchestrate epithelial-mesenchymal transitions" 7 : 131-142, 2006
49 Golstein, P., "Cell death by necrosis : towards a molecular definition" 32 : 37-43, 2007
50 Kim, S., "Carcinomaproduced factors activate myeloid cells through TLR2 to stimulate metastasis" 457 : 102-106, 2009
51 Hsu, P. P., "Cancer cell metabolism : Warburg and beyond" 134 : 703-707, 2008
52 Taguchi, A., "Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases" 405 : 354-360, 2000
53 Degenhardt, K., "Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis" 10 : 51-64, 2006
54 Horning, J. L., "3-D tumor model for in vitro evaluation of anticancer drugs" 5 : 849-862, 2008
고지방식이로 유도된 비만 마우스의 해마 및 대뇌피질에서 운동강도에 따른 nNOS 발현의 변화
학술지 이력
연월일 | 이력구분 | 이력상세 | 등재구분 |
---|---|---|---|
2027 | 평가예정 | 재인증평가 신청대상 (재인증) | |
2021-01-01 | 평가 | 등재학술지 유지 (재인증) | ![]() |
2018-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2011-08-03 | 학술지명변경 | 외국어명 : Korean Journal of Life Science -> Journal of Life Science | ![]() |
2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
2004-01-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
2003-01-01 | 평가 | 등재후보 1차 PASS (등재후보1차) | ![]() |
2001-07-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
---|---|---|---|
2016 | 0.37 | 0.37 | 0.42 |
KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
0.43 | 0.43 | 0.774 | 0.09 |