RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Multicellular tumor spheroid (MTS) 배양에 의한 EMT에서 HMGB1의 역할

      한글로보기

      https://www.riss.kr/link?id=A106028690

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB1)를 extracellular space로 방출하는 것으로 알려져 있다. 방출된 HMGB1은 tumor-promoting cytokine으로 작용함으로써 tumor development 시 inflammation, metabolism 및 metastasis에 기여한다. 본 연구에서 non-invasive breast cancer cells MCF-7이 solid tumor의 in vitro model인 multicellular tumor spheroid (MTS) 배양을 통해 완전한 구형의 MTS를 형성하며 MTS가 성장함에 따라 inner region에 necrosis가 유도됨을 밝혔다. 또한 MCF-7 세포의 MTS 배양은 Snail 의존적으로 epithelial-mesenchymal transition (EMT)를 유도함을 관찰하였다. HMGB1의 cell surface receptors인 RAGE, TLR2, TLR4 발현이 MTS 배양에 의해 증가됨을 발견하였다. RAGE, TLR2, TLR4 를 knockdown한 결과 MTS 성장을 억제할 뿐만 아니라 MTS에 의해 증가되는 Snail 발현을 억제함을 밝혔다. 이는 MTS-induced Snail 발현이 RAGE/TLR2/TLR4의존적으로 조절되며 RAGE/TLR2/TLR4-Snail이 MTS 성장에 관여하는 것으로 보인다. 또한 Snail, RAGE, TLR2, TLR4 shRNA는 MTS 배양에 의해 유도되는 EMT를 억제함을 밝혔다. 실제 인간 암조직에서 정상조직에 비해 RAGE, TLR2, TLR4 유전자의 발현이 높음을 관찰하였다. 따라서 HMGB1이 RAGE/TLR2/4-Snail axis를 통해 MTS 배양에 따른 성장 및 EMT에 중요하게 작용할 것으로 예상된다.
      번역하기

      암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB...

      암조직의 내부에서 hypoxia와 glucose depletion 등의 microenvironmental stress를 받게 되면 necrosis가 유도되고, 실제로 암 조직 내부에서 necrotic core 형성이 관찰된다. Necrotic cells은 high mobility group box 1(HMGB1)를 extracellular space로 방출하는 것으로 알려져 있다. 방출된 HMGB1은 tumor-promoting cytokine으로 작용함으로써 tumor development 시 inflammation, metabolism 및 metastasis에 기여한다. 본 연구에서 non-invasive breast cancer cells MCF-7이 solid tumor의 in vitro model인 multicellular tumor spheroid (MTS) 배양을 통해 완전한 구형의 MTS를 형성하며 MTS가 성장함에 따라 inner region에 necrosis가 유도됨을 밝혔다. 또한 MCF-7 세포의 MTS 배양은 Snail 의존적으로 epithelial-mesenchymal transition (EMT)를 유도함을 관찰하였다. HMGB1의 cell surface receptors인 RAGE, TLR2, TLR4 발현이 MTS 배양에 의해 증가됨을 발견하였다. RAGE, TLR2, TLR4 를 knockdown한 결과 MTS 성장을 억제할 뿐만 아니라 MTS에 의해 증가되는 Snail 발현을 억제함을 밝혔다. 이는 MTS-induced Snail 발현이 RAGE/TLR2/TLR4의존적으로 조절되며 RAGE/TLR2/TLR4-Snail이 MTS 성장에 관여하는 것으로 보인다. 또한 Snail, RAGE, TLR2, TLR4 shRNA는 MTS 배양에 의해 유도되는 EMT를 억제함을 밝혔다. 실제 인간 암조직에서 정상조직에 비해 RAGE, TLR2, TLR4 유전자의 발현이 높음을 관찰하였다. 따라서 HMGB1이 RAGE/TLR2/4-Snail axis를 통해 MTS 배양에 따른 성장 및 EMT에 중요하게 작용할 것으로 예상된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.
      번역하기

      As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic...

      As tumors develop, they encounter microenvironmental stress, such as hypoxia and glucose depletion, due to poor vascular function, thereby leading to necrosis, which is observed in solid tumors. Necrotic cells are known to release cellular cytoplasmic contents, such as high mobility group box 1 (HMGB1), into the extracellular space. The release of HMGB1, a proinflammatory and tumor-promoting cytokine, plays an important role in promoting inflammation and metabolism during tumor development. Recently, HMGB1 was shown to induce the epithelial-mesenchymal transition (EMT) and metastasis. However, the underlying mechanism of the HMGB1-induced EMT, invasion, and metastasis is unclear. In this study, we showed that noninvasive breast cancer cells MCF-7 formed tightly packed, rounded spheroids and that the cells in the inner regions of a multicellular tumor spheroid (MTS), an in vitro model of a solid tumor, led to necrosis due to an insufficient supply of O2 and glucose. In addition, after 7 d of MTS culture, the EMT was induced via the transcription factor Snail. We also showed that HMGB1 receptors, including RAGE, TLR2, and TLR4, were induced by MTS culture. RAGE, TLR2, and TLR4 shRNA inhibited MTS growth, supporting the idea that RAGE/TLR2/TLR4 play critical roles in MTS growth. They also prevented MTS culture-induced Snail expression, pointing to RAGE/TLR2/TLR4-dependent Snail expression. RAGE, TLR2, and TLR4 shRNA suppressed the MTS-induced EMT. In human cancer tissues, high levels of RAGE, TLR2, and TLR4 were detected. These findings demonstrated that the HMGB-RAGE/TLR2/TLR4-Snail axis played a crucial role in the growth of the MTS and MTS culture-induced EMT.

      더보기

      목차 (Table of Contents)

      • 서론
      • 재료 및 방법
      • 결과 및 고찰
      • References
      • 초록
      • 서론
      • 재료 및 방법
      • 결과 및 고찰
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 Matoba, S., "p53 regulates mitochondrial respiration" 312 : 1650-1653, 2006

      2 Lee, S. Y., "Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism" 72 : 3607-3617, 2012

      3 Gatenby, R. A., "Why do cancers have high aerobic glycolysis?" 4 : 891-899, 2004

      4 Vander Heiden, M. G., "Understanding the Warburg effect : the metabolic requirements of cell proliferation" 324 : 1029-1033, 2009

      5 Bald, T., "Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma" 507 : 109-113, 2014

      6 Fukata, M., "Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors" 133 : 1869-1881, 2007

      7 He, M., "The role of the receptor for advanced glycation end-products in lung fibrosis" 293 : L1427-L1436, 2007

      8 Kondo, Y., "The role of autophagy in cancer development and response to therapy" 5 : 726-734, 2005

      9 Chen, R. C., "The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines" 390 : 271-280, 2014

      10 Kang, R., "The receptor for advanced glycation end products(RAGE)sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival" 17 : 666-676, 2010

      1 Matoba, S., "p53 regulates mitochondrial respiration" 312 : 1650-1653, 2006

      2 Lee, S. Y., "Wnt/Snail signaling regulates cytochrome C oxidase and glucose metabolism" 72 : 3607-3617, 2012

      3 Gatenby, R. A., "Why do cancers have high aerobic glycolysis?" 4 : 891-899, 2004

      4 Vander Heiden, M. G., "Understanding the Warburg effect : the metabolic requirements of cell proliferation" 324 : 1029-1033, 2009

      5 Bald, T., "Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma" 507 : 109-113, 2014

      6 Fukata, M., "Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors" 133 : 1869-1881, 2007

      7 He, M., "The role of the receptor for advanced glycation end-products in lung fibrosis" 293 : L1427-L1436, 2007

      8 Kondo, Y., "The role of autophagy in cancer development and response to therapy" 5 : 726-734, 2005

      9 Chen, R. C., "The role of HMGB1-RAGE axis in migration and invasion of hepatocellular carcinoma cell lines" 390 : 271-280, 2014

      10 Kang, R., "The receptor for advanced glycation end products(RAGE)sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival" 17 : 666-676, 2010

      11 Conti, L., "The noninflammatory role of high mobility group box 1/Tolllike receptor 2 axis in the self-renewal of mammary cancer stem cells" 27 : 4731-4744, 2013

      12 Dang, C. V., "The interplay between MYC and HIF in cancer" 8 : 51-56, 2008

      13 DeBerardinis, R. J., "The biology of cancer : metabolic reprogramming fuels cell growth and proliferation" 7 : 11-20, 2008

      14 Kang, R., "The HMGB1/RAGE inflammatory pathway promotes pancreatic tumor growth by regulating mitochondrial bioenergetics" 33 : 567-577, 2014

      15 Hua, D., "Small interfering RNA-directed targeting of Toll-like receptor 4 inhibits human prostate cancer cell invasion, survival, and tumorigenicity" 46 : 2876-2884, 2009

      16 Tye, H., "STAT3-driven upregulation of TLR2 promotes gastric tumorigenesis independent of tumor inflammation" 22 : 466-478, 2012

      17 Kunjithapatham, R., "Reversal of anchorage-independent multicellular spheroid into a monolayer mimics a metastatic model" 4 : 6816-, 2014

      18 Scaffidi, P., "Release of chromatin protein HMGB1 by necrotic cells triggers inflammation" 418 : 191-195, 2002

      19 De Craene, B., "Regulatory networks defining EMT during cancer initiation and progression" 13 : 97-110, 2013

      20 Lee, S. Y., "Regulation of Tumor Progression by Programmed Necrosis" 2018 : 3537471-, 2018

      21 Rouhiainen, A., "RAGE-mediated cell signaling" 963 : 239-263, 2013

      22 Yu, L. X., "Platelets promote tumour metastasis via interaction between TLR4 and tumour cell-released high-mobility group box1 protein" 5 : 5256-, 2014

      23 Liu, A., "Oxidation of HMGB1 causes attenuation of its pro-inflammatory activity and occurs during liver ischemia and reperfusion" 7 : e35379-, 2012

      24 Zong, W. X., "Necrotic death as a cell fate" 20 : 1-15, 2006

      25 Lamouille, S., "Molecular mechanisms of epithelial-mesenchymal transition" 15 : 178-196, 2014

      26 Sabharwal, S. S., "Mitochondrial ROS in cancer : initiators, amplifiers or an Achilles' heel?" 14 : 709-721, 2014

      27 Guo, Z. S., "Life after death : targeting high mobility group box 1 in emergent cancer therapies" 3 : 1-20, 2013

      28 Vakkila, J., "Inflammation and necrosis promote tumour growth" 4 : 641-648, 2004

      29 Kim, C. H., "Implication of snail in metabolic stress-induced necrosis" 6 : e18000-, 2011

      30 Denko, N. C, "Hypoxia, HIF1 and glucose metabolism in the solid tumour" 8 : 705-713, 2008

      31 Hielscher, A., "Hypoxia and free radicals : role in tumor progression and the use of engineering-based platforms to address these relationships" 79 : 281-291, 2015

      32 Marin-Hernandez, A., "Hypoglycemia enhances epithelial-mesenchymal transition and invasiveness, and restrains the warburg phenotype, in hypoxic HeLa cell cultures and microspheroids" 232 : 1346-1359, 2016

      33 Lee, S. Y., "Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis" 10 : 113-, 2011

      34 Lynch, J., "High-mobility group box protein 1 : a novel mediator of inflammatory-induced renal epithelial-mesenchymal transition" 32 : 590-602, 2010

      35 Lotze, M. T., "High-mobility group box 1 protein(HMGB1) : nuclear weapon in the immune arsenal" 5 : 331-342, 2005

      36 Yan, W., "High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases" 55 : 1863-1875, 2012

      37 Zhu, L., "High-mobility group box 1 : a novel inducer of the epithelial-mesenchymal transition in colorectal carcinoma" 357 : 527-534, 2015

      38 Kang, R., "HMGB1 in cancer : good, bad, or both?" 19 : 4046-4057, 2013

      39 Sims, G. P., "HMGB1 and RAGE in inflammation and cancer" 28 : 367-388, 2010

      40 Zhang, H., "HIF-1inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity" 11 : 407-420, 2007

      41 Kim, J. W., "HIF-1-mediated expression of pyruvate dehydrogenase kinase : a metabolic switch required for cellular adaptation to hypoxia" 3 : 177-185, 2006

      42 Fukuda, R., "HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells" 129 : 111-122, 2007

      43 Papandreou, I., "HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption" 3 : 187-197, 2006

      44 Palumbo, R., "Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation" 164 : 441-449, 2004

      45 Tsai, J. H., "Epithelial-mesenchymal plasticity in carcinoma metastasis" 27 : 2192-2206, 2013

      46 Ivascu, A., "Diversity of cell-mediated adhesions in breast cancer spheroids" 31 : 1403-1413, 2007

      47 Edinger, A. L., "Death by design : apoptosis, necrosis and autophagy" 16 : 663-669, 2004

      48 Thiery, J. P., "Complex networks orchestrate epithelial-mesenchymal transitions" 7 : 131-142, 2006

      49 Golstein, P., "Cell death by necrosis : towards a molecular definition" 32 : 37-43, 2007

      50 Kim, S., "Carcinomaproduced factors activate myeloid cells through TLR2 to stimulate metastasis" 457 : 102-106, 2009

      51 Hsu, P. P., "Cancer cell metabolism : Warburg and beyond" 134 : 703-707, 2008

      52 Taguchi, A., "Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases" 405 : 354-360, 2000

      53 Degenhardt, K., "Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis" 10 : 51-64, 2006

      54 Horning, J. L., "3-D tumor model for in vitro evaluation of anticancer drugs" 5 : 849-862, 2008

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼