RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems = A Learning-based Power Control Scheme for Edge-based eHealth IoT Systems

      한글로보기

      https://www.riss.kr/link?id=A107990224

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance heal...

      The Internet of Things (IoT) eHealth systems composed by Wireless Body Area Network (WBAN) has emerged recently. Sensor nodes are placed around or in the human body to collect physiological data. WBAN has many different applications, for instance health monitoring. Since the limitation of the size of the battery, besides speed, reliability, and accuracy; design of WBAN protocols should consider the energy efficiency and time delay. To solve these problems, this paper adopt the end-edge-cloud orchestrated network architecture and propose a transmission based on reinforcement algorithm. The priority of sensing data is classified according to certain application. System utility function is modeled according to the channel factors, the energy utility, and successful transmission conditions. The optimization problem is mapped to Q-learning model. Following this online power control protocol, the energy level of both the senor to coordinator, and coordinator to edge server can be modified according to the current channel condition. The network performance is evaluated by simulation. The results show that the proposed power control protocol has higher system energy efficiency, delivery ratio, and throughput.

      더보기

      참고문헌 (Reference)

      1 S. Movassaghi, "Wireless body area networks : a survey" 16 (16): 1658-1686, 2014

      2 S. Tennina, "WSN4QoL : WSNs for remote patient monitoring in e-health applications" 1-6, 2016

      3 F. Masud, "Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs" 19 (19): 466-488, 2019

      4 R. A. Khan, "The state-of-the-art wireless body area sensor networks : a survey" 14 (14): 1-23, 2018

      5 S. M. R. Islam, "The Internet of things for health care : a comprehensive survey" 3 : 678-708, 2015

      6 S. Archasantisuk, "Temporal Correlation Model-Based Transmission Power Control in Wireless Body Area Network" 8 (8): 191-199, 2018

      7 S. I. Popoola, "Stacked recurrent neural network for botnet detection in smart homes" 92 : 107039-, 2021

      8 A. Argyriou, "Optimizing data forwarding from body area networks in the presence of body shadowing with dual wireless technology nodes" 14 (14): 632-645, 2015

      9 H. Moosavi, "Optimal Relay Selection and Power Control with Quality-of-Service Provisioning in Wireless Body Area Networks" 15 (15): 5497-5510, 2016

      10 F. Ullah, "Medium access control(MAC)for wireless wody area network(WBAN) : superframe structure, multiple access technique, taxonomy, and challenges" 7 (7): 1-34, 2017

      1 S. Movassaghi, "Wireless body area networks : a survey" 16 (16): 1658-1686, 2014

      2 S. Tennina, "WSN4QoL : WSNs for remote patient monitoring in e-health applications" 1-6, 2016

      3 F. Masud, "Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs" 19 (19): 466-488, 2019

      4 R. A. Khan, "The state-of-the-art wireless body area sensor networks : a survey" 14 (14): 1-23, 2018

      5 S. M. R. Islam, "The Internet of things for health care : a comprehensive survey" 3 : 678-708, 2015

      6 S. Archasantisuk, "Temporal Correlation Model-Based Transmission Power Control in Wireless Body Area Network" 8 (8): 191-199, 2018

      7 S. I. Popoola, "Stacked recurrent neural network for botnet detection in smart homes" 92 : 107039-, 2021

      8 A. Argyriou, "Optimizing data forwarding from body area networks in the presence of body shadowing with dual wireless technology nodes" 14 (14): 632-645, 2015

      9 H. Moosavi, "Optimal Relay Selection and Power Control with Quality-of-Service Provisioning in Wireless Body Area Networks" 15 (15): 5497-5510, 2016

      10 F. Ullah, "Medium access control(MAC)for wireless wody area network(WBAN) : superframe structure, multiple access technique, taxonomy, and challenges" 7 (7): 1-34, 2017

      11 Z. Liu, "Joint Power-Rate-Slot Resource Allocation in Energy Harvesting-Powered Wireless Body Area Networks" 67 (67): 12152-12164, 2018

      12 "IEEE Standard for Local and Metropolitan Area Networks-Part 15.6: Wireless Body Area Networks, IEEE Standard 802.15.6"

      13 S. I. Popoola, "Hybrid Deep Learning for Botnet Attack Detection in the Internet-of-Things Networks" 8 (8): 4944-4956, 2021

      14 W. Zang, "Gait-Cycle-Driven Transmission Power Control Scheme for a Wireless Body Area Network" 22 (22): 697-706, 2018

      15 V. Varga, "Enabling interactive infrastructure with body channel communication" 1 (1): 169-, 2017

      16 Y. Yin, "Cross-Layer Resource Allocation for UAV-Assisted Wireless Caching Networks with NOMA" 70 (70): 3428-3438, 2021

      17 H. Zhang, "Connecting intelligent things in smart hospitals using NB-IoT" 5 (5): 1550-1560, 2018

      18 S. Pandit, "An energy-efficient multiconstrained QoS aware MAC protocol for body sensor networks" 74 (74): 5353-5374, 2015

      19 C. Zhang, "An energy-efficient MAC protocol for medical emergency monitoring body sensor networks" 16 (16): 1-19, 2016

      20 W. -L. Zang, "An accelerometer-assisted transmission power control solution for energy-efficient communications in WBAN" 34 (34): 3427-3437, 2016

      21 R. Goyal, "An Energy Efficient QoS Supported Optimized Transmission Rate Technique in WBANs" 117 (117): 235-260, 2021

      22 S. Nepal, "A new MAC protocol for emergency handling in wireless body area networks" 588-590, 2016

      23 G. Yang, "A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box" 10 (10): 2180-2191, 2014

      24 A. K. Jacob, "A green media access method for IEEE 802. 15. 6 wireless body area network" 41 (41): 1-14, 2017

      25 H. Habibzadeh, "A Survey of Healthcare Internet of Things(HIoT) : A Clinical Perspective" 7 (7): 53-71, 2020

      26 Y. Zhang, "A Relay-Aided Transmission Power Control Method in Wireless Body Area Networks" (5) : 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      학술지등록 한글명 : KSII Transactions on Internet and Information Systems
      외국어명 : KSII Transactions on Internet and Information Systems
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-10-01 평가 등재학술지 선정 (기타) KCI등재
      2011-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2009-01-01 평가 SCOPUS 등재 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.21 0.37
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.32 0.29 0.244 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼