RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      인공신경망 기반 양돈시설 암모니아 농도 예측

      한글로보기

      https://www.riss.kr/link?id=A107379343

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This ammonia prediction study was performed using the time-series artificial neural network model, Long-short term memory (LSTM), after long-term monitoring of ammonia and environmental factors (ventilation rate (V), temperature (T), humidity (RH)) from a slurry finishing pig farm on mechanical ventilation system. The difference with the actual ammonia concentration was compared through prediction of the last three days of the entire breeding period. As a result of the analysis, the model which had a low correlation (ammonia concentration and humidity) was confirmed to have less error values than the models that did not. In addition, the combination of two or more input values [V, RH] and [T, V, RH] showed the lowest error value. In this study, the sustainability period of the model trained by multivariate input values was analyzed for about two days. In addition, [T, V, RH] showed the highest predictive performance with regard to the actual time of the occurrence of peak concentration compared to other models . These results can be useful in providing highly reliable information to livestock farmers regarding the management of concentrations through artificial neural network-based prediction models.
      번역하기

      This ammonia prediction study was performed using the time-series artificial neural network model, Long-short term memory (LSTM), after long-term monitoring of ammonia and environmental factors (ventilation rate (V), temperature (T), humidity (RH)) fr...

      This ammonia prediction study was performed using the time-series artificial neural network model, Long-short term memory (LSTM), after long-term monitoring of ammonia and environmental factors (ventilation rate (V), temperature (T), humidity (RH)) from a slurry finishing pig farm on mechanical ventilation system. The difference with the actual ammonia concentration was compared through prediction of the last three days of the entire breeding period. As a result of the analysis, the model which had a low correlation (ammonia concentration and humidity) was confirmed to have less error values than the models that did not. In addition, the combination of two or more input values [V, RH] and [T, V, RH] showed the lowest error value. In this study, the sustainability period of the model trained by multivariate input values was analyzed for about two days. In addition, [T, V, RH] showed the highest predictive performance with regard to the actual time of the occurrence of peak concentration compared to other models . These results can be useful in providing highly reliable information to livestock farmers regarding the management of concentrations through artificial neural network-based prediction models.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서 론
      • 2. 연구 방법
      • 2.1 Time-Series Data
      • 2.2 Long Short-Term Memory (LSTM)
      • Abstract
      • 1. 서 론
      • 2. 연구 방법
      • 2.1 Time-Series Data
      • 2.2 Long Short-Term Memory (LSTM)
      • 3. 연구 결과 및 고찰
      • 4. 결 론
      • References
      더보기

      참고문헌 (Reference)

      1 이웅섭, "축사에서 딥러닝을 이용한 질병개체 파악방안" 한국정보통신학회 21 (21): 1009-1015, 2017

      2 조광곤, "대기 중 암모니아 측정을 위한 분석 방법별 비교" 한국냄새환경학회 19 (19): 137-148, 2020

      3 조광곤, "강제환기식 육성돈사의 암모니아 배출 특성 연구" 한국냄새환경학회 19 (19): 29-38, 2020

      4 조광곤, "강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교" 한국농공학회 62 (62): 61-70, 2020

      5 김선태, "가축분뇨 이동과 처리를 고려한 국가 암모니아 인벤토리 개선 연구" 한국냄새환경학회 14 (14): 182-189, 2015

      6 Hochreiter, S., "Long short-term memory" 9 (9): 1735-1780, 1997

      7 Cho, K. H., "Learning phrase representations using RNN encoder-decoder for statistical machine translation" 1724-1734, 2014

      8 Hempel, S., "How the selection of training data and modeling approach affects the estimation of ammonia emissions from a naturally ventilated dairy barn-Classical statistics versus machine learning" 12 (12): 1030-, 2020

      9 Géron, A., "Hands-on machine learning with ScikitLearn, Keras and TensorFlow : concepts, tools, and techniques to build intelligent systems" O’Reilly Media 851-, 2019

      10 Blanes-Vidal, V., "Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow" 124 (124): 237-244, 2008

      1 이웅섭, "축사에서 딥러닝을 이용한 질병개체 파악방안" 한국정보통신학회 21 (21): 1009-1015, 2017

      2 조광곤, "대기 중 암모니아 측정을 위한 분석 방법별 비교" 한국냄새환경학회 19 (19): 137-148, 2020

      3 조광곤, "강제환기식 육성돈사의 암모니아 배출 특성 연구" 한국냄새환경학회 19 (19): 29-38, 2020

      4 조광곤, "강제환기식 돈사의 환기량 추정을 위한 회귀모델의 비교" 한국농공학회 62 (62): 61-70, 2020

      5 김선태, "가축분뇨 이동과 처리를 고려한 국가 암모니아 인벤토리 개선 연구" 한국냄새환경학회 14 (14): 182-189, 2015

      6 Hochreiter, S., "Long short-term memory" 9 (9): 1735-1780, 1997

      7 Cho, K. H., "Learning phrase representations using RNN encoder-decoder for statistical machine translation" 1724-1734, 2014

      8 Hempel, S., "How the selection of training data and modeling approach affects the estimation of ammonia emissions from a naturally ventilated dairy barn-Classical statistics versus machine learning" 12 (12): 1030-, 2020

      9 Géron, A., "Hands-on machine learning with ScikitLearn, Keras and TensorFlow : concepts, tools, and techniques to build intelligent systems" O’Reilly Media 851-, 2019

      10 Blanes-Vidal, V., "Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow" 124 (124): 237-244, 2008

      11 Aarnink, A. J. A., "Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs" 64 (64): 299-310, 1996

      12 Jeppsson, K. H., "Diurnal variation in ammonia, carbon dioxide and water vapour emission from an uninsulated, deep litter building for growing/finishing pigs" 81 (81): 213-223, 2002

      13 Liao, Q., "Deep Learning for Air Quality Forecasts : a Review" 6 (6): 399-409, 2020

      14 Ahmed, N. K., "An empirical comparison of machine learning models for time series forecasting" 29 (29): 594-621, 2010

      15 Aarnink, A. J. A., "Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors" 62 (62): 105-116, 1995

      16 Jo, G., "Ammonia emission characteristics of a mechanically ventilated swine finishing facility in korea" 11 (11): 1088-, 2020

      17 Costa, A., "Ammonia Concentrations and Emissions from Finishing Pigs Reared in Different Growing Rooms" 46 (46): 255-260, 2017

      18 Kingma, D. P., "Adam : A method for stochastic optimization" 2015

      19 Xie, Q., "A prediction model of ammonia emission from a fattening pig room based on the indoor concentration using adaptive neuro fuzzy inference system" 325 : 301-309, 2017

      20 Sit, M., "A comprehensive review of deep learning applications in hydrology and water resources" 82 (82): 2635-2670, 2020

      21 Minitstry of environment (ME), "2017 national air pollutants emission"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2014-03-31 학술지명변경 한글명 : 한국냄새환경학회지 -> 실내환경 및 냄새 학회지
      외국어명 : Journal of Korean Society of Odor Research and Engineering -> Journal of Odor and Indoor Environment
      KCI등재후보
      2013-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2012-12-24 학술지명변경 외국어명 : Korean Journal of Odor Research and Engineering -> Journal of Korean Society of Odor Research and Engineering KCI등재후보
      2012-01-01 평가 등재후보학술지 유지 (기타) KCI등재후보
      2011-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2010-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2009-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.42 0.554 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼