RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      트랜잭션 중심의 발견적 화일 수직분할 방법

      한글로보기

      https://www.riss.kr/link?id=A30072557

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      관계형 데이타베이스 환경에서 데이타 분할은 트랜잭션 혹은 질의에 요구되는 데이타량과 직접적인 관련이 있다. 본 논문에서 고려하는 데이타 분할은 중복이 없는 수직 분할로 다음 두 단계로 이루어져 있다.
      첫째 단계에서는, 각 속성들간의 친밀도를 최대화시키는 0-1 정수 모형으로 속성들을 클러스터링한다. 이 단계의 결과를 초기 단편이라 한다.
      두번재 단계에서는, 트랜잭션에 기반한 분할 방법을 이용하여 비용요소가 직접적으로 고려되지 않은 초기 단편을 변환시킨다. 트랜잭션에 기반한 분할 방법이란 트랜잭션 위주로 속성들을 나누는 것이다. 이 단계에서는 트랜잭션 수행에 요구되는 논리적인 액세스량을 비교 척도로 한다.
      즉, 이 논문에서 제안한 수직 분할은 친밀도를 최대로 하는 최적화 모형으로 초기 분할을 한 후, 트랜잭션에 근거한 분할 방법을 이용한 발견적 기법으로 해를 개선시켜 나간다.
      번역하기

      관계형 데이타베이스 환경에서 데이타 분할은 트랜잭션 혹은 질의에 요구되는 데이타량과 직접적인 관련이 있다. 본 논문에서 고려하는 데이타 분할은 중복이 없는 수직 분할로 다음 두 단...

      관계형 데이타베이스 환경에서 데이타 분할은 트랜잭션 혹은 질의에 요구되는 데이타량과 직접적인 관련이 있다. 본 논문에서 고려하는 데이타 분할은 중복이 없는 수직 분할로 다음 두 단계로 이루어져 있다.
      첫째 단계에서는, 각 속성들간의 친밀도를 최대화시키는 0-1 정수 모형으로 속성들을 클러스터링한다. 이 단계의 결과를 초기 단편이라 한다.
      두번재 단계에서는, 트랜잭션에 기반한 분할 방법을 이용하여 비용요소가 직접적으로 고려되지 않은 초기 단편을 변환시킨다. 트랜잭션에 기반한 분할 방법이란 트랜잭션 위주로 속성들을 나누는 것이다. 이 단계에서는 트랜잭션 수행에 요구되는 논리적인 액세스량을 비교 척도로 한다.
      즉, 이 논문에서 제안한 수직 분할은 친밀도를 최대로 하는 최적화 모형으로 초기 분할을 한 후, 트랜잭션에 근거한 분할 방법을 이용한 발견적 기법으로 해를 개선시켜 나간다.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼