RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      A Deep Learning-Based Compact Weighted Binary Classification Technique to Discriminate between Targets and Clutter in SAR Images

      한글로보기

      https://www.riss.kr/link?id=A108229675

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The proposed approach is a deep learning-based compact weighted binary classification (DL-CWBC) method to discriminate between targets and clutter in synthetic aperture radar (SAR) images. A new modified cross-entropy error function is proposed to improve the probability of detection by controlling the rate of false alarms (FAs). The unique feature of a CWBC algorithm is reducing the FA rate and maximizing the probability of target detection without missing any target. For pre-processing, targets and clutter are detected through a constant false alarm rate (CFAR) as a conventional detection algorithm. These are then manually divided into two classes. The classified targets and clutter were trained through a ResNet-101 network. There is a trade-off between the minimization of the FA rate and the maximization of the detection probability for targets of interest (TOIs). The weighted coefficient of the modified cross-entropy error function tries to maximize the performance of this trade-off. In addition, the proposed approach enables us not to miss any targets by an extreme distinction decision. Above all, the DL-CWBC algorithm performs very well despite its simplicity.
      번역하기

      The proposed approach is a deep learning-based compact weighted binary classification (DL-CWBC) method to discriminate between targets and clutter in synthetic aperture radar (SAR) images. A new modified cross-entropy error function is proposed to imp...

      The proposed approach is a deep learning-based compact weighted binary classification (DL-CWBC) method to discriminate between targets and clutter in synthetic aperture radar (SAR) images. A new modified cross-entropy error function is proposed to improve the probability of detection by controlling the rate of false alarms (FAs). The unique feature of a CWBC algorithm is reducing the FA rate and maximizing the probability of target detection without missing any target. For pre-processing, targets and clutter are detected through a constant false alarm rate (CFAR) as a conventional detection algorithm. These are then manually divided into two classes. The classified targets and clutter were trained through a ResNet-101 network. There is a trade-off between the minimization of the FA rate and the maximization of the detection probability for targets of interest (TOIs). The weighted coefficient of the modified cross-entropy error function tries to maximize the performance of this trade-off. In addition, the proposed approach enables us not to miss any targets by an extreme distinction decision. Above all, the DL-CWBC algorithm performs very well despite its simplicity.

      더보기

      참고문헌 (Reference)

      1 L. M. Novak, "The automatic target-recognition system in SAIP" 10 (10): 187-202, 1997

      2 W. Yu, "Superpixel-based CFAR target detection for high-resolution SAR images" 13 (13): 730-734, 2016

      3 W. G. Carrara, "Spotlight Synthetic Aperture Radar: Signal Processing Algorithms" Artech House 2013

      4 Y. L. Chang, "Ship detection based on YOLOv2 for SAR imagery" 11 (11): 786-, 2019

      5 M. Ma, "Ship classification and detection based on CNN using GF-3 SAR images" 10 (10): 2043-, 2018

      6 S. Chen, "SAR target recognition based on deep learning" 541-547, 2014

      7 L. Zeng, "SAR target detection based on PSIFT feature clustering" 17-20, 2019

      8 H. Rohling, "Radar CFAR thresholding in clutter and multiple target situations" 19 (19): 608-621, 1983

      9 L. M. Novak, "Performance of a high-resolution polarimetric SAR automatic target recognition system" 6 (6): 11-24, 1993

      10 S. Blake, "OS-CFAR theory for multiple targets and nonuniform clutter" 24 (24): 785-790, 1998

      1 L. M. Novak, "The automatic target-recognition system in SAIP" 10 (10): 187-202, 1997

      2 W. Yu, "Superpixel-based CFAR target detection for high-resolution SAR images" 13 (13): 730-734, 2016

      3 W. G. Carrara, "Spotlight Synthetic Aperture Radar: Signal Processing Algorithms" Artech House 2013

      4 Y. L. Chang, "Ship detection based on YOLOv2 for SAR imagery" 11 (11): 786-, 2019

      5 M. Ma, "Ship classification and detection based on CNN using GF-3 SAR images" 10 (10): 2043-, 2018

      6 S. Chen, "SAR target recognition based on deep learning" 541-547, 2014

      7 L. Zeng, "SAR target detection based on PSIFT feature clustering" 17-20, 2019

      8 H. Rohling, "Radar CFAR thresholding in clutter and multiple target situations" 19 (19): 608-621, 1983

      9 L. M. Novak, "Performance of a high-resolution polarimetric SAR automatic target recognition system" 6 (6): 11-24, 1993

      10 S. Blake, "OS-CFAR theory for multiple targets and nonuniform clutter" 24 (24): 785-790, 1998

      11 J. I. Park, "New discrimination features for SAR automatic target recognition" 10 (10): 476-480, 2013

      12 P. Tait, "Introduction to Radar Target Recognition" Institution of Engineering and Technology 2009

      13 L. M. Kaplan, "Improved SAR target detection via extended fractal features" 37 (37): 436-451, 2001

      14 G. B. Goldstein, "False-alarm regulation in log-normal and Weibull clutter" 9 (9): 84-92, 1973

      15 L. M. Novak, "Effects of polarization and resolution on SAR ATR" 33 (33): 102-116, 1997

      16 D. E. Kreithen, "Discriminating targets from clutter" 6 (6): 25-52, 1993

      17 S. Bao, "Detection of ocean internal waves based on Faster R-CNN in SAR images" 38 (38): 55-63, 2020

      18 K. He, "Deep residual learning for image recognition" 770-778, 2016

      19 G. Gao, "An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images" 47 (47): 1685-1697, 2009

      20 A. Farina, "A review of CFAR detection techniques in radar systems" 29 (29): 115-128, 1986

      21 Q. Pham, "A reduced false alarm rate CFAR-based prescreener for SAR ATR" 1997

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2012-06-22 학술지명변경 한글명 : Journal of The Korean Institute of Electromagnetic Engineering and Science -> Journal of Electromagnetic Engineering and Science
      외국어명 : Journal of The Korean Institute of Electromagnetic Engineering and Science -> Journal of Electromagnetic Engineering and Science
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-04-08 학술지명변경 한글명 : Journal of The Korea Electromagnetic Engineering Society -> Journal of The Korean Institute of Electromagnetic Engineering and Science
      외국어명 : Journal of The Korea Electromagnetic Engineering Society -> Journal of The Korean Institute of Electromagnetic Engineering and Science
      KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-09-28 학술지명변경 한글명 : 영문논문지(JKEES) -> Journal of The Korea Electromagnetic Engineering Society KCI등재후보
      2004-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.28 0.28 0.31
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.21 0.656 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼