RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      애매성 해소기를 이용한 웹문서 분류시스템 = A Web-Document Categorization System Using a Sense Disambiguator

      한글로보기

      https://www.riss.kr/link?id=A75009887

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we design and implement a categorization system to the web-document which is diverse and noisy. As there is no consistent form and content in the document, it is not easy to design and implement the web-document categorization system. The presented system adopts the neural network method which is suitable for learning and processing the noise to determine the category of the web-document. This system consists of a Korean morphological analyzer, a sense extractor, a sense disambiguator, and a category determiner. The morphological analyzer separates the noun word in the document. The sense extractor acquires the senses on the words in the document. The sense disambiguator solves the ambiguity of the word. Finally, the category determiner decides the category of the input document with the neural network. In this paper, we use the sense disambiguator to solve the ambiguity of the word. Therefore, we can get the more good categorization quality with the sense disambiguator.
      번역하기

      In this paper, we design and implement a categorization system to the web-document which is diverse and noisy. As there is no consistent form and content in the document, it is not easy to design and implement the web-document categorization system. T...

      In this paper, we design and implement a categorization system to the web-document which is diverse and noisy. As there is no consistent form and content in the document, it is not easy to design and implement the web-document categorization system. The presented system adopts the neural network method which is suitable for learning and processing the noise to determine the category of the web-document. This system consists of a Korean morphological analyzer, a sense extractor, a sense disambiguator, and a category determiner. The morphological analyzer separates the noun word in the document. The sense extractor acquires the senses on the words in the document. The sense disambiguator solves the ambiguity of the word. Finally, the category determiner decides the category of the input document with the neural network. In this paper, we use the sense disambiguator to solve the ambiguity of the word. Therefore, we can get the more good categorization quality with the sense disambiguator.

      더보기

      목차 (Table of Contents)

      • ABSTRACT
      • I. 서론
      • II. 웹문서 분류 시스템
      • III. 시스템의 실험과 결과
      • IV. 결론
      • ABSTRACT
      • I. 서론
      • II. 웹문서 분류 시스템
      • III. 시스템의 실험과 결과
      • IV. 결론
      • 참고문헌
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼