RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      데이터마이닝을 활용한 해군함정 수리부속 수요예측 = Naval Vessel Spare Parts Demand Forecasting Using Data Mining

      한글로보기

      https://www.riss.kr/link?id=A104595553

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy).
      Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques.
      First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity , ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique.
      Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.
      번역하기

      Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy). Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national d...

      Recent development in science and technology has modernized the weapon system of ROKN (Republic Of Korea Navy).
      Although the cost of purchasing, operating and maintaining the cutting-edge weapon systems has been increased significantly, the national defense expenditure is under a tight budget constraint. In order to maintain the availability of ships with low cost, we need accurate demand forecasts for spare parts. We attempted to find consumption pattern using data mining techniques.
      First we gathered a large amount of component consumption data through the DELIIS (Defense Logistics Intergrated Information System). Through data collection, we obtained 42 variables such as annual consumption quantity , ASL selection quantity, order-relase ratio. The objective variable is the quantity of spare parts purchased in f-year and MSE (Mean squared error) is used as the predictive power measure. To construct an optimal demand forecasting model, regression tree model, randomforest model, neural network model, and linear regression model were used as data mining techniques. The open software R was used for model construction. The results show that randomforest model is the best value of MSE. The important variables utilized in all models are consumption quantity, ASL selection quantity and order-release rate. The data related to the demand forecast of spare parts in the DELIIS was collected and the demand for the spare parts was estimated by using the data mining technique.
      Our approach shows improved performance in demand forecasting with higher accuracy then previous work. Also data mining can be used to identify variables that are related to demand forecasting.

      더보기

      참고문헌 (Reference)

      1 선미선, "한국군의 수리부속 수요예측 발전방안 연구 - 해군 중심으로 -" 한국국방연구원 25 (25): 201-234, 2009

      2 이선아, "데이터마이닝을 이용한 허위거래 예측 모형:농산물 도매시장 사례" 한국지능정보시스템학회 21 (21): 161-177, 2015

      3 이규용, "데이터마이닝을 이용한 재고관리에 관한 사례연구" 한국산업경영시스템학회 30 (30): 20-27, 2007

      4 유제복, "데이터 마이닝을 활용한 외과수술환자의 회복실 체류시간 분석" 한국산학기술학회 14 (14): 3400-3411, 2013

      5 최기선, "데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘" 제어·로봇·시스템학회 15 (15): 1056-1061, 2009

      6 김재동, "데이터 마이닝 기반의 수리부속 수요예측 연구" 한국인터넷정보학회 18 (18): 121-129, 2017

      7 Jeon, D.H., "The relationship between the board of audit and inspection of Korea and internal audit agency" Korea National Defense University 2015

      8 Woo, J.W., "Development of spare parts demand forecasting model" KIDA 30-, 2013

      9 Clifton, C., "Definition of data mining"

      10 Linoff, G.S., "Data mining techniques:for marketing, sales, and customer relationship management" John Wiley & Sons 10-15, 2004

      1 선미선, "한국군의 수리부속 수요예측 발전방안 연구 - 해군 중심으로 -" 한국국방연구원 25 (25): 201-234, 2009

      2 이선아, "데이터마이닝을 이용한 허위거래 예측 모형:농산물 도매시장 사례" 한국지능정보시스템학회 21 (21): 161-177, 2015

      3 이규용, "데이터마이닝을 이용한 재고관리에 관한 사례연구" 한국산업경영시스템학회 30 (30): 20-27, 2007

      4 유제복, "데이터 마이닝을 활용한 외과수술환자의 회복실 체류시간 분석" 한국산학기술학회 14 (14): 3400-3411, 2013

      5 최기선, "데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘" 제어·로봇·시스템학회 15 (15): 1056-1061, 2009

      6 김재동, "데이터 마이닝 기반의 수리부속 수요예측 연구" 한국인터넷정보학회 18 (18): 121-129, 2017

      7 Jeon, D.H., "The relationship between the board of audit and inspection of Korea and internal audit agency" Korea National Defense University 2015

      8 Woo, J.W., "Development of spare parts demand forecasting model" KIDA 30-, 2013

      9 Clifton, C., "Definition of data mining"

      10 Linoff, G.S., "Data mining techniques:for marketing, sales, and customer relationship management" John Wiley & Sons 10-15, 2004

      11 Richard Roiger, "Data mining a tutorial based primer" Pearson 2003

      12 Woo, J.W., "A study on the operation of specialist institution" KIDA 34-36, 2011

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-11-29 학회명변경 영문명 : 미등록 -> KOREAN SOCIETY OF INDUSTRIAL AND SYSTEMS ENGINEERING KCI등재
      2021-11-25 학술지명변경 외국어명 : Journal of Society of Korea Industrial and Systems Engineering -> Journal of Korean Society of Industrial and Systems Engineering KCI등재
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-12-04 학술지명변경 한글명 : 산업경영시스템학회지 -> 한국산업경영시스템학회지
      외국어명 : Journal of the Society of Korea Industrial and Systems Engineering -> Journal of Society of Korea Industrial and Systems Engineering
      KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.34 0.34 0.3
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.28 0.28 0.37 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼