RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      DIMENSION REDUCTION FOR APPROXIMATION OF ADVANCED RETRIAL QUEUES : TUTORIAL AND REVIEW

      한글로보기

      https://www.riss.kr/link?id=A105110153

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      Retrial queues have been widely used to model the many practical situations arising from telephone systems, telecommunication networks and call centers. An approximation method for a simple Markovian retrial queue by reducing the two dimensional problem to one dimensional problem was presented by Fredericks and Reisner in 1979. The method seems to be a promising approach to approximate the retrial queues with complex structure, but the method has not been attracted a lot of attention for about thirty years. In this paper, we exposit the method in detail and show the usefulness of the method by presenting the recent results for approximating the retrial queues with complex structure such as multiserver retrial queues with phase type distribution of retrial time, impatient customers with general persistent function and/or multiclass customers, etc.
      번역하기

      Retrial queues have been widely used to model the many practical situations arising from telephone systems, telecommunication networks and call centers. An approximation method for a simple Markovian retrial queue by reducing the two dimensional probl...

      Retrial queues have been widely used to model the many practical situations arising from telephone systems, telecommunication networks and call centers. An approximation method for a simple Markovian retrial queue by reducing the two dimensional problem to one dimensional problem was presented by Fredericks and Reisner in 1979. The method seems to be a promising approach to approximate the retrial queues with complex structure, but the method has not been attracted a lot of attention for about thirty years. In this paper, we exposit the method in detail and show the usefulness of the method by presenting the recent results for approximating the retrial queues with complex structure such as multiserver retrial queues with phase type distribution of retrial time, impatient customers with general persistent function and/or multiclass customers, etc.

      더보기

      참고문헌 (Reference)

      1 M. Boualem, "Stochastic inequality for M=G=1 retrial queues with vacations and constant retrial policy" 50 : 207-212, 2009

      2 Y.W. Shin, "Stochastic comparisons of Markovian retrial queues" 29 : 473-488, 2000

      3 R.W. Wolff, "Stochastic Modeling and The Theory of Queues" Prentice Hall 1989

      4 G. Choudhury, "Steady state analysis of an M=G=1 queue with linear retrial policy and two phase service under Bernoulli vacation schedule" 32 : 2480-2489, 2008

      5 Yang Woo Shin, "Stability of $MAP/PH/c/K$ queue with customer retrials and server vacations" 대한수학회 53 (53): 985-1004, 2016

      6 Z. Khalil, "Some analytical results for congestion in subscriber line modules" 10 : 381-402, 1992

      7 B.D. Choi, "Single server retrial queues with probability calls" 30 : 7-32, 1999

      8 H.M. Liang, "Service station factors in monotonicity of retrial queues" 30 : 189-196, 1999

      9 신양우, "Sensitivity of M/M/c Retrial Queue with Respect to Retrial Times : Experimental Investigation" 대한산업공학회 37 (37): 83-88, 2011

      10 H.M. Liang, "Retrial queues" University of North Carolina at Chapel Hill 1991

      1 M. Boualem, "Stochastic inequality for M=G=1 retrial queues with vacations and constant retrial policy" 50 : 207-212, 2009

      2 Y.W. Shin, "Stochastic comparisons of Markovian retrial queues" 29 : 473-488, 2000

      3 R.W. Wolff, "Stochastic Modeling and The Theory of Queues" Prentice Hall 1989

      4 G. Choudhury, "Steady state analysis of an M=G=1 queue with linear retrial policy and two phase service under Bernoulli vacation schedule" 32 : 2480-2489, 2008

      5 Yang Woo Shin, "Stability of $MAP/PH/c/K$ queue with customer retrials and server vacations" 대한수학회 53 (53): 985-1004, 2016

      6 Z. Khalil, "Some analytical results for congestion in subscriber line modules" 10 : 381-402, 1992

      7 B.D. Choi, "Single server retrial queues with probability calls" 30 : 7-32, 1999

      8 H.M. Liang, "Service station factors in monotonicity of retrial queues" 30 : 189-196, 1999

      9 신양우, "Sensitivity of M/M/c Retrial Queue with Respect to Retrial Times : Experimental Investigation" 대한산업공학회 37 (37): 83-88, 2011

      10 H.M. Liang, "Retrial queues" University of North Carolina at Chapel Hill 1991

      11 G.I. Falin, "Retrial Queues" Chapman and Hall 1997

      12 J.R. Artalejo, "Retrial Queueing Systems, A Computational Approach" Springer-Verlag 2008

      13 G.I. Falin, "On the single server retrial queue with priority customers" 14 : 439-455, 1993

      14 V.G. Kulkarni, "On queueing systems with retrials" 20 : 380-389, 1983

      15 G.I. Falin, "On a multiclass batch arrival retrial queue" 20 : 483-487, 1988

      16 신양우, "ON APPROXIMATIONS FOR GI/G/c RETRIAL QUEUES" 한국전산응용수학회 31 (31): 311-325, 2013

      17 M.F. Neuts, "Numerical investigation of a multiserver retrial model" 7 : 169-190, 1990

      18 S.A. Grishechkin, "Multiclass batch arrival retrial queues analyzed as branching process with immigration" 11 : 395-418, 1992

      19 H.M. Liang, "Monotonicity properties of single server retrial queues" 9 : 373-400, 1993

      20 Y.W. Shin, "Monotonicity properties in various retrial queues and their applications" 53 : 147-157, 2006

      21 J.C. Ke, "Modified vacation policy for M=G=1 retrial queue with balking and feedback" 57 : 433-443, 2009

      22 M.F. Neuts, "Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach" Johns Hopkins University Press 1981

      23 A. Bobbio, "Matching three moments with minimal acyclic phase type distributions" 21 : 303-326, 2005

      24 M.A. Johnson, "Matching moments to phase distributions : mixture of Erlang distributions of common order" 5 : 711-743, 1989

      25 Y.W. Shin, "M=M=s queue with impatient customers and retrials" 33 : 2596-2606, 2009

      26 Y.W. Shin, "M=M=c retrial queue with multiclass of customers" 16 : 931-949, 2014

      27 B.D. Choi, "M=G=1 retrial queueing systems with two types of calls and finite capacity" 19 : 215-229, 1995

      28 신양우, "INTERPOLATION APPROXIMATION OF M/G/c/K RETRIAL QUEUE WITH ORDINARY QUEUES" 한국전산응용수학회 30 (30): 531-540, 2012

      29 S.N. Stepanov, "Generalized model with repeated calls in case of extreme load" 27 : 131-151, 1997

      30 Y.W. Shin, "Fundamental matrix of transient QBD generator with finite states and level dependent transitions" 26 : 697-714, 2009

      31 V.G. Kulkarni, "Frontiers in Queueing: Models and Applications in Science and Engineering" CRC Press 19-34,

      32 V.G. Kulkarni, "Expected waiting times in a multiclass batch arrival retrial queue" 23 : 144-154, 1986

      33 Q.M. He, "Ergodicity of the BMAP=PH=s=s + K retrial queue with PH retrial times" 35 : 323-347, 2000

      34 N. Gharbi, "Colored stochastic Petri nets for modelling and analysis of multiclass retrial systems" 49 : 1436-1448, 2009

      35 T. Osogami, "Closed form solutions for mapping general distributions to quasiminimal PH distributions" 62 : 524-552, 2006

      36 J.W. Cohen, "Basic problems of telephone traffic theory and the influence of repeated calls" 18 : 49-100, 1957

      37 A.A. Fredericks, "Approximations to stochastic service systems with an application to a retrial model" 58 : 557-576, 1979

      38 Y.W. Shin, "Approximations of retrial queu with limited number of retrials" 37 : 1262-1270, 2010

      39 Y.W. Shin, "Approximation of PH=PH=c retrial queu with PH-retrial times" 31 : 1440010-, 2014

      40 Y.W. Shin, "Approximation of M=M=s=K retrial queu with nonpersistent customers" 37 : 753-761, 2013

      41 Y.W. Shin, "Approximation of M=M=c retrial queu with PH-retrial times" 213 : 205-209, 2011

      42 신양우, "Approximation of M/G/c Retrial Queue with M/PH/c Retrial Queue" 한국통계학회 19 (19): 169-175, 2012

      43 J.E. Diamond, "Approximation method for M=PH=1 retrial queues with phase type inter-retrial times" 113 : 620-631, 1999

      44 W. Whitt, "Approximating a point process by a renewal process, I: two basic methods" 30 : 125-147, 1982

      45 S. Asmussen, "Applied Probability and Queues" Springer-Verlag 2003

      46 J. Kim, "Analysis of the M=G=1 queue with discriminatory random order service policy" 68 : 256-270, 2011

      47 X. Xu, "Analysis of multiple-server queue with a single vacation (e; d)-policy" 63 : 825-838, 2006

      48 M. Martin, "Analysis of an M=G=1 queue with two types of impatient units" 27 : 840-861, 1995

      49 J.R. Artalejo, "Analysis of an M=G=1 queue with constant repeated attempts and server vacations" 24 : 493-504, 1997

      50 B.S. Greenberg, "An upper bound on the performance of queues with returning customer" 24 : 466-475, 1987

      51 T. Phung-Duc, "An efficient method for performance analysis of blended call centers with retrial" 31 : 1440008-, 2014

      52 T. Yang, "An approximation method for the M=G=1 retrial queues with general retrial times" 76 : 552-562, 1994

      53 B.K. Kummar, "An M=M=c retrial queueing system with Bernoulli vacations" 18 : 222-242, 2009

      54 Y.W. Shin, "Algorithmic approach to Markovian multi-server retrial queue with vacations" 250 : 287-297, 2015

      55 J.R. Artalejo, "Accessible bibliography on retrial queues: Progress in 2000-2009" 51 : 1071-1081, 2000

      56 J.R. Artalejo, "Accessible bibliography on retrial queues" 30 : 1-6, 1999

      57 신양우, "APPROXIMATE ANALYSIS OF M/M/c RETRIAL QUEUE WITH SERVER VACATIONS" 한국산업응용수학회 19 (19): 443-457, 2015

      58 신양우, "ALGORITHMIC SOLUTION FOR M/M/c RETRIAL QUEUE WITH PH_2-RETRIAL TIMES" 한국전산응용수학회 29 (29): 803-811, 2011

      59 T. Yang, "A survey on retrial queues" 2 : 201-233, 1987

      60 G.I. Falin, "A survey of retrial queues" 7 : 127-168, 1990

      61 J. Kim, "A survey of retrial queueing systems" 247 : 3-36, 2016

      62 E. Morozov, "A multiserver retrial queue: regenerative stability analysis" 56 : 157-168, 2007

      63 J.R. Artalejo, "A classified bibliography of research on retrial queues: Progress in 1990-1999" 7 : 187-211, 1999

      64 A. G´omez-Corral, "A bibliographical guid to the analysis of retrial queues through matrix analytic techniques" 141 : 163-191, 2006

      65 G. Choudhry, "A batch arrival retrial queue with general retrial times under Bernoulli vacation schedule for unreliable server and delayed repair" 36 : 255-269, 2012

      66 L. Breuer, "A Retrial BMAP=PH=N system" 40 : 433-457, 2002

      67 H. Tijms, "A First Course in Stochastic Models" Wiley 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-11-08 학회명변경 영문명 : The Korean Society For Computational & Applied Mathematics And Korean Sigcam -> Korean Society for Computational and Applied Mathematics KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-02-18 학술지명변경 한글명 : Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Informatics
      외국어명 : Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Informatics
      KCI등재
      2008-02-15 학술지명변경 한글명 : Journal of Applied Mathematics and Computing(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.)
      외국어명 : Journal of Applied Mathematics and Computing(Former: Korean J. of Comput. and Appl. Math.) -> Journal of Applied Mathematics and Infomatics(Former: Korean J. of Comput. and Appl. Math.)
      KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.16 0.16 0.13
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.1 0.07 0.312 0.02
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼