RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE

      Analysis of Energy Efficiency and Productivity in Dry Process in PCB Manufacturing

      한글로보기

      https://www.riss.kr/link?id=A104256619

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Generally, the cleaning process in printed circuit board (PCB) manufacturing consists of prewash, wash, rinse, and drying stages. The prewash stage rinses off the gross contaminants from the board before the wash stage. In the wash stage, spray bar an...

      Generally, the cleaning process in printed circuit board (PCB) manufacturing consists of prewash, wash, rinse, and drying stages.
      The prewash stage rinses off the gross contaminants from the board before the wash stage. In the wash stage, spray bar and nozzle assembly is used to remove all remaining contaminants. An anti-dragout section exists between the wash and the rinse stages. The use of an air in this section helps prevent any liquid dragout from the wash to the rinse tank. Some cleaners also have a wet isolation that provides further rinsing off the wash water from the PCB. As the last stage of the cleaning process, at drying stage, high temperature and high pressure air is used to get rid of the remaining moist thoroughly. By the way, it is known that the dry process consumes a moderately large amount of electric power since high temperature and high pressure air are required in this stage.
      However, if the due date of a certain PCB product is not too much tight, it would be not necessary to increase the temperature and pressure to proceed with drying. Thus, in this research, after collecting the experimental data and modeling the situations with appropriate statistical models, we develop a heuristic approach to the dry process in order to find optimal operating condition which minimizes the energy consumption while meeting the due dates of the ordered products as exactly as possible. Through the heuristic algorithm, that is, interchange-crossover algorithm, we provide an optimal (or near optimal) operating condition which can minimize both the total energy consumption and total penalty cost incurred by earliness and tardiness at the same time. The performance of the other approach is also investigated and compared to that of the developed heuristic approach.

      더보기

      참고문헌 (Reference)

      1 Sviszt, O., "Typical features of printed circuit board production enterprise resource planning systems" 19-20, 2005

      2 Pusavec, F., "Transitioning to sustainable production – Part I : application on machining technologies" 18 (18): 174-184, 2010

      3 Crama, Y., "The Assembly of Printed Circuit Boards : A Case with Multiple Machines and Multiple Board Types" 98 (98): 457-472, 1997

      4 Rajemi, M. F., "Sustainable machining : selection of optimum turning conditions based on minimum energy considerations" 18 (18): 1059-1065, 2010

      5 Moyer, L. K., "Simultaneous Component Sequencing and feeder Assignment for High Speed Chip Shooter Machines" 6 (6): 271-305, 1996

      6 Pinedo, M. L., "Scheduling: Theory, Algorithms and Systems, 3rd Ed." Springer 2008

      7 Moyer, L. K., "SMT Feeder Slot Assignment for Predetermined Component Placement Paths" 6 (6): 173-192, 1996

      8 Khandpur, R. S., "Printed Circuit Boards: Design, Fabrication, Assembly and Testing" McGraw-Hill 2005

      9 Leung, J., "Optimal cyclic scheduling for printed circuit board production lines with multiple hoists and general processing sequence" 19 (19): 480-484, 2003

      10 Luo, Z., "Modeling flank wear of carbide tool insert in metal cutting" 258 (258): 1235-1240, 2005

      1 Sviszt, O., "Typical features of printed circuit board production enterprise resource planning systems" 19-20, 2005

      2 Pusavec, F., "Transitioning to sustainable production – Part I : application on machining technologies" 18 (18): 174-184, 2010

      3 Crama, Y., "The Assembly of Printed Circuit Boards : A Case with Multiple Machines and Multiple Board Types" 98 (98): 457-472, 1997

      4 Rajemi, M. F., "Sustainable machining : selection of optimum turning conditions based on minimum energy considerations" 18 (18): 1059-1065, 2010

      5 Moyer, L. K., "Simultaneous Component Sequencing and feeder Assignment for High Speed Chip Shooter Machines" 6 (6): 271-305, 1996

      6 Pinedo, M. L., "Scheduling: Theory, Algorithms and Systems, 3rd Ed." Springer 2008

      7 Moyer, L. K., "SMT Feeder Slot Assignment for Predetermined Component Placement Paths" 6 (6): 173-192, 1996

      8 Khandpur, R. S., "Printed Circuit Boards: Design, Fabrication, Assembly and Testing" McGraw-Hill 2005

      9 Leung, J., "Optimal cyclic scheduling for printed circuit board production lines with multiple hoists and general processing sequence" 19 (19): 480-484, 2003

      10 Luo, Z., "Modeling flank wear of carbide tool insert in metal cutting" 258 (258): 1235-1240, 2005

      11 Kanet, J. J., "Minimizing the average deviation of job completion times about a common due date" 28 (28): 643-651, 1981

      12 Liow, J. L., "Mechanical micromachining: a sustainable microdevice manufacturing approach?" 17 (17): 662-667, 2009

      13 Montgomery, D. C., "Introduction to Linear Regression Analysis" John Wiley & Sons 2001

      14 Goosey, M., "Energy conservation and related best practices in printed circuit board (PCB) manufacturing" 36 (36): 38-42, 2010

      15 Fernandez-Flores, O., "Design considerations of scheduling systems suitable for PCB manufacturing" 58 (58): 794-798, 2009

      16 Jeswiet, J., "Carbon emissions and CESTM in manufacturing" 57 (57): 17-20, 2008

      17 박유진, "Application of Heuristic Approaches to Minimization of Energy Consumption in Inner Layer Scrubbing Process in PCB Manufacturing" 한국정밀공학회 13 (13): 1059-1066, 2012

      18 Alisantoso, D., "An immune algorithm approach to the scheduling of a flexible PCB flow shop" 22 (22): 819-827, 2003

      19 Lee, G. C., "A dispatching rule-based approach to production scheduling in a printed circuit board manufacturing system" PALGRAVE PUBLISHERS LTD 54 (54): 1038-1049, 2003

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-06-23 학회명변경 영문명 : Korean Society Of Precision Engineering -> Korean Society for Precision Engineering KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-05-30 학술지명변경 한글명 : 한국정밀공학회 영문논문집 -> International Journal of the Korean of Precision Engineering KCI등재후보
      2005-05-30 학술지명변경 한글명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      외국어명 : International Journal of the Korean of Precision Engineering -> International Journal of Precision Engineering and Manufacturing
      KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.38 0.71 1.08
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.85 0.583 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼