RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법 = A Real-Time Face Detection/Tracking Methodology Using Haar-wavelets and Skin Color

      한글로보기

      https://www.riss.kr/link?id=A103973318

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The proposed method resolves the problem such as rotation and occlusion due to the characteristic of the condensation algorithm based on sampling despite it uses same features in both detection and tracking. In particular, it can be applied to a variety of applications such as face recognition and facial expression recognition which need an exact position and size of face since it not only keeps track of the position of a face, but also covers the size variation. Our test results show that our method performs well even in a complex background, a scene with varying face orientation and so on.
      번역하기

      In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The pro...

      In this paper, we propose a real-time face detection/tracking methodology with Haar wavelets and skin color. The proposed method boosts face detection and face tracking performance by combining skin color and Haar wavelets in an efficient way. The proposed method resolves the problem such as rotation and occlusion due to the characteristic of the condensation algorithm based on sampling despite it uses same features in both detection and tracking. In particular, it can be applied to a variety of applications such as face recognition and facial expression recognition which need an exact position and size of face since it not only keeps track of the position of a face, but also covers the size variation. Our test results show that our method performs well even in a complex background, a scene with varying face orientation and so on.

      더보기

      국문 초록 (Abstract)

      본 논문은 Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법을 제안한다. 검출과 추적이 각기 다른 특징들을 이용해 이루어졌던 기존 방법과는 달리 본 논문에서는 피부색 정보와 Haar 웨이블릿 특징을 검출과 추적에 동시에 이용하고 두 특징들을 효과적으로 융합함으로써 빠르고 강인한 추적을 가능하게 한다. 제안된 방법은 검출과 추적에 동일한 특징을 이용함에도 불구하고 표본화에 기반을 둔 Condensation 알고리즘의 특징으로 인해 검출 방법만을 적용했을 때 검출하지 못하는 얼굴의 회전이나 가려짐 등의 문제를 효과적으로 해결한다. 특히, 얼굴의 위치와 함께 크기 변화를 효과적으로 추적하기 때문에 얼굴의 위치 및 크기를 정확하게 알아야 하는 얼굴 인식이나 표정 인식 등의 다양한 어플리케이션에 이용되기에 용이하다. 제안된 방법은 복잡한 배경 및 다양한 얼굴 자세 등의 변화에 대한 테스트를 통해 효율성을 검증한다.
      번역하기

      본 논문은 Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법을 제안한다. 검출과 추적이 각기 다른 특징들을 이용해 이루어졌던 기존 방법과는 달리 본 논문에서는 ...

      본 논문은 Haar 웨이블릿 특징과 피부색 정보를 이용한 실시간 얼굴 검출 및 추적 방법을 제안한다. 검출과 추적이 각기 다른 특징들을 이용해 이루어졌던 기존 방법과는 달리 본 논문에서는 피부색 정보와 Haar 웨이블릿 특징을 검출과 추적에 동시에 이용하고 두 특징들을 효과적으로 융합함으로써 빠르고 강인한 추적을 가능하게 한다. 제안된 방법은 검출과 추적에 동일한 특징을 이용함에도 불구하고 표본화에 기반을 둔 Condensation 알고리즘의 특징으로 인해 검출 방법만을 적용했을 때 검출하지 못하는 얼굴의 회전이나 가려짐 등의 문제를 효과적으로 해결한다. 특히, 얼굴의 위치와 함께 크기 변화를 효과적으로 추적하기 때문에 얼굴의 위치 및 크기를 정확하게 알아야 하는 얼굴 인식이나 표정 인식 등의 다양한 어플리케이션에 이용되기에 용이하다. 제안된 방법은 복잡한 배경 및 다양한 얼굴 자세 등의 변화에 대한 테스트를 통해 효율성을 검증한다.

      더보기

      참고문헌 (Reference)

      1 G. Hager, "X Vision Computer Vision : A Portable Substrate for Real-Time Vision Applications" 69 (69): 23-37, 1998.

      2 E.Osuna, "Training Support Vector Machines : an Application to Face Detection" June1997.

      3 T. Sim, "The CMU Pose, Illumination, and Expression Database" 25 (25): 1615-1618, 2003.

      4 Paul Viola, "Rapid object detection using a boosted cascade of simple features" 2001.

      5 Richard O. Duda, "Pattern Classification" Wiley-Interscience 2000.

      6 H.A.Rowley, "Neural Network- Based Face Detection" 20 (20): 23-38, January.1998.

      7 Michael Jones, "Fast Multi-view Face Detection" 2003.

      8 R. C Verma, "Face Detection and Tracking in a Video by Propagating Detection Probabilities" 1215-1226, 2003.

      9 C Garcia, "Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis" 1 : 264-277, 1999.

      10 S. Birchfield, "Elliptical Head Tracking Using Intensity Gradients and Color Histograms" 232-237, 1998.

      1 G. Hager, "X Vision Computer Vision : A Portable Substrate for Real-Time Vision Applications" 69 (69): 23-37, 1998.

      2 E.Osuna, "Training Support Vector Machines : an Application to Face Detection" June1997.

      3 T. Sim, "The CMU Pose, Illumination, and Expression Database" 25 (25): 1615-1618, 2003.

      4 Paul Viola, "Rapid object detection using a boosted cascade of simple features" 2001.

      5 Richard O. Duda, "Pattern Classification" Wiley-Interscience 2000.

      6 H.A.Rowley, "Neural Network- Based Face Detection" 20 (20): 23-38, January.1998.

      7 Michael Jones, "Fast Multi-view Face Detection" 2003.

      8 R. C Verma, "Face Detection and Tracking in a Video by Propagating Detection Probabilities" 1215-1226, 2003.

      9 C Garcia, "Face Detection Using Quantized Skin Color Regions Merging and Wavelet Packet Analysis" 1 : 264-277, 1999.

      10 S. Birchfield, "Elliptical Head Tracking Using Intensity Gradients and Color Histograms" 232-237, 1998.

      11 MH Yang, "Detecting Faces in Images:A Survey" 34-58, 2002.

      12 M. Isard, "CONDENSATION-conditional density propagation for visual tracking" 29 : 5-28, 1998.

      13 A. Gelb, "Applied Optimal Estimation" MIT Press 1992.

      14 Yoav Freund, "A decision-theoretic generalization of on-line learning and an application to boosting" Springer-Verlag 23-37, 1995.

      15 C.Liu, "A Bayesian Discriminating Features Method for Face Detection" 5 (5): 725-740, June.2003.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼