RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      칼라 영역의 크기와 뭉침을 기술하는 칼라 동시발생 히스토그램을 이용한 영상검색 = Image Retrieval Using the Color Co-occurrence Histogram Describing the Size and Coherence of the Homogeneous Color Region

      한글로보기

      https://www.riss.kr/link?id=A103973311

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurrence histogram that the diagonal part and the non-diagonal part are attached the weight and modified to energy of color co-occurrence histogram, and the number of bins with petty worth have little influence is curtailed. It’s verified by analysis that the diagonal part carries size information of homogeneous color region and the non-diagonal part does information about the coherence of it, Moreover the non-diagonal part is more influential than diagonal part in survey of similarity between images. So, the non-diagonal part is attached more weight than the diagonal part as a result of the research. The experiments validate that the proposed descriptor shows better image retrieval performance when the weight for non-diagonal part is set to the value between 0.7 and 0.9.
      번역하기

      For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurr...

      For the efficient image retrieval, the method has studied that uses color distribution and relations between pixels. This paper presents the color descriptor that stands high above the others in image retrieval capacity. It is based on color co-occurrence histogram that the diagonal part and the non-diagonal part are attached the weight and modified to energy of color co-occurrence histogram, and the number of bins with petty worth have little influence is curtailed. It’s verified by analysis that the diagonal part carries size information of homogeneous color region and the non-diagonal part does information about the coherence of it, Moreover the non-diagonal part is more influential than diagonal part in survey of similarity between images. So, the non-diagonal part is attached more weight than the diagonal part as a result of the research. The experiments validate that the proposed descriptor shows better image retrieval performance when the weight for non-diagonal part is set to the value between 0.7 and 0.9.

      더보기

      국문 초록 (Abstract)

      칼라 영상을 효과적으로 검색하기 위해 칼라의 분포와 화소 간 위치 정보를 이용하여 영상을 검색하는 방법이 연구되었다. 본 논문에서는 적은 빈 개수로 칼라 분포와 화소 간 위치 정보를 효율적으로 기술하여 영상을 검색할 수 있는 기술자를 제안한다. 이는 칼라 동시발생 히스토그램의 대각성분과 비 대각성분에 가중치를 주어 에너지를 변형하고, 의미가 약한 값의 빈을 제거한 것이다. 분석을 통해 칼라 동시발생 히스토그램의 대각성분과 비 대각성분은 같은 칼라를 가지는 영역의 크기 정보와 그 영역 간의 뭉침 정보를 기술하며, 비 대각성분이 대각성분에 비해 영상검색에 더 우수한 특성을 나타낸다는 것을 확인하였다. 그래서, 비 대각성분의 가중치를 대각성분의 가중치에 비해 높게 주면 영상검색을 효과적으로 할 수 있다는 사실을 밝혔다. 64 레벨로 칼라 양자화된 RGB 칼라 좌표계에서의 실험영상에서, 가중치가 0.7에서 0.9인 제안한 기술자가 기존의 기술자에 비해 우수하게 영상을 검색함을 알 수 있었다.
      번역하기

      칼라 영상을 효과적으로 검색하기 위해 칼라의 분포와 화소 간 위치 정보를 이용하여 영상을 검색하는 방법이 연구되었다. 본 논문에서는 적은 빈 개수로 칼라 분포와 화소 간 위치 정보를 ...

      칼라 영상을 효과적으로 검색하기 위해 칼라의 분포와 화소 간 위치 정보를 이용하여 영상을 검색하는 방법이 연구되었다. 본 논문에서는 적은 빈 개수로 칼라 분포와 화소 간 위치 정보를 효율적으로 기술하여 영상을 검색할 수 있는 기술자를 제안한다. 이는 칼라 동시발생 히스토그램의 대각성분과 비 대각성분에 가중치를 주어 에너지를 변형하고, 의미가 약한 값의 빈을 제거한 것이다. 분석을 통해 칼라 동시발생 히스토그램의 대각성분과 비 대각성분은 같은 칼라를 가지는 영역의 크기 정보와 그 영역 간의 뭉침 정보를 기술하며, 비 대각성분이 대각성분에 비해 영상검색에 더 우수한 특성을 나타낸다는 것을 확인하였다. 그래서, 비 대각성분의 가중치를 대각성분의 가중치에 비해 높게 주면 영상검색을 효과적으로 할 수 있다는 사실을 밝혔다. 64 레벨로 칼라 양자화된 RGB 칼라 좌표계에서의 실험영상에서, 가중치가 0.7에서 0.9인 제안한 기술자가 기존의 기술자에 비해 우수하게 영상을 검색함을 알 수 있었다.

      더보기

      참고문헌 (Reference)

      1 A. Bimbo, "Visual Information Retrieval" Morgan Kaufmann 2001.

      2 D. Messing, "The MPEG-7 Colour Structure Descriptors Image Description using Colour and Local Spatial Information" 1 : 670-673, 2001.

      3 Patrick N, "Subjective Evaluation of the MPEG-7 Retrieval Accuracy Measure(ANMRR)" 2000.

      4 J. Huang, "Spatial Color Indexing and Applications" 35 (35): 245-268, 1999.

      5 N. Howe, "Improving the Boosted Correlogram" 1 : 803-810, 2004.

      6 S. O. Shim, "Image Indexing by Modified Color Co-occurrence matrix" 3 : 493-496, 2003.

      7 G. Paschos, "Image Content- based Retrieval Using Chromaticity Moments" 15 (15): 1069-1072, 2003.

      8 K. Wong, "Dominant Color Image Retrieval using Merged Histogram" 2 : 908-911, 2003.

      9 A. Smeulders, "Content-based Image Retrieval at the End of the early Years" 22 (22): 2000.

      10 E. Broek, "Content-Based Image Retrieval Benchmarking: Utilizing Color Categories and Color Distributions" 49 (49): 293-301, 2005.

      1 A. Bimbo, "Visual Information Retrieval" Morgan Kaufmann 2001.

      2 D. Messing, "The MPEG-7 Colour Structure Descriptors Image Description using Colour and Local Spatial Information" 1 : 670-673, 2001.

      3 Patrick N, "Subjective Evaluation of the MPEG-7 Retrieval Accuracy Measure(ANMRR)" 2000.

      4 J. Huang, "Spatial Color Indexing and Applications" 35 (35): 245-268, 1999.

      5 N. Howe, "Improving the Boosted Correlogram" 1 : 803-810, 2004.

      6 S. O. Shim, "Image Indexing by Modified Color Co-occurrence matrix" 3 : 493-496, 2003.

      7 G. Paschos, "Image Content- based Retrieval Using Chromaticity Moments" 15 (15): 1069-1072, 2003.

      8 K. Wong, "Dominant Color Image Retrieval using Merged Histogram" 2 : 908-911, 2003.

      9 A. Smeulders, "Content-based Image Retrieval at the End of the early Years" 22 (22): 2000.

      10 E. Broek, "Content-Based Image Retrieval Benchmarking: Utilizing Color Categories and Color Distributions" 49 (49): 293-301, 2005.

      11 G. Pass, "Comparing Images using Colour Coherence Vectors" 65-73, 1996.

      12 B. Manjunath, "Color and Texture Descriptors" 11 (11): 2001.

      13 M. Swain, "Color Indexing" 7 (7): 11 -32, 1992

      14 V. Kovalev, "Color Co-occurrence Descriptors for Querying-by-Example" 32-, 1998.

      15 J. Huang, "Automatic Hierarchical Color Image Classification" 2 : 151-159, 2003.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-10-31 학술지명변경 한글명 : 소프트웨어 및 데이터 공학 -> 정보처리학회논문지. 소프트웨어 및 데이터 공학 KCI등재
      2012-10-10 학술지명변경 한글명 : 정보처리학회논문지B -> 소프트웨어 및 데이터 공학
      외국어명 : The KIPS Transactions : Part B -> KIPS Transactions on Software and Data Engineering
      KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.35 0.35 0.28
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.23 0.19 0.511 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼