RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      유전자 알고리즘을 이용한 OPKFDD의 최적화 = Optimization of OPKFDDs using Genetic Algorithms

      한글로보기

      https://www.riss.kr/link?id=A82293675

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram)는 각 노드에서 다양한 확장방법(decomposition)을 취할 수 있는 Ordered-DD(Decision Diagram)의 한 종류로서 각 노드마다 Shannon, positive Davio, negative Davio 확장중의 하나를 사용하도록 하며 다른 종류의 DD와 비교해서 작은 수의 노드로 함수를 표현할 수 있다. 그러나 각 노드마다 각기 다른 확장 방법을 선택할 수 있는 특징 때문에 입력 노드에 대한 확장 방법과 입력 변수 순서의 결정에 의해서 OPKFDD의 크기가 좌우되며 최소의 노드 수를 갖는 OPKFDD의 구성은 매우 어려운 문제로 알려져 있다. 즉, OPKFDD에서의 입력변수와 각 노드의 확장 방법을 병행해서 최적의 해를 구하기 위해서는 n개의 입력변수에 대해서 n! · 3^(2^n - 1) 의 경우의 수를 고려해야 한다. 따라서 본 논문에서는 주어진 불리안 함수를 OPKFDD의 최적화 표현을 위해 노드 수를 기준으로 하여 입력변수 순서와 각 노드의 확장 방법을 함께 고려하는 혼용 유전자 알고리즘을 제안하며 최소의 노드 수를 갖는 OPKFDD를 생성하기 위해서 다양한 파라미터 값에 따른 실험결과를 제시한다.
      번역하기

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram)는 각 노드에서 다양한 확장방법(decomposition)을 취할 수 있는 Ordered-DD(Decision Diagram)의 한 종류로서 각 노드마다 Shannon, positive Davio, negative Davio 확...

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram)는 각 노드에서 다양한 확장방법(decomposition)을 취할 수 있는 Ordered-DD(Decision Diagram)의 한 종류로서 각 노드마다 Shannon, positive Davio, negative Davio 확장중의 하나를 사용하도록 하며 다른 종류의 DD와 비교해서 작은 수의 노드로 함수를 표현할 수 있다. 그러나 각 노드마다 각기 다른 확장 방법을 선택할 수 있는 특징 때문에 입력 노드에 대한 확장 방법과 입력 변수 순서의 결정에 의해서 OPKFDD의 크기가 좌우되며 최소의 노드 수를 갖는 OPKFDD의 구성은 매우 어려운 문제로 알려져 있다. 즉, OPKFDD에서의 입력변수와 각 노드의 확장 방법을 병행해서 최적의 해를 구하기 위해서는 n개의 입력변수에 대해서 n! · 3^(2^n - 1) 의 경우의 수를 고려해야 한다. 따라서 본 논문에서는 주어진 불리안 함수를 OPKFDD의 최적화 표현을 위해 노드 수를 기준으로 하여 입력변수 순서와 각 노드의 확장 방법을 함께 고려하는 혼용 유전자 알고리즘을 제안하며 최소의 노드 수를 갖는 OPKFDD를 생성하기 위해서 다양한 파라미터 값에 따른 실험결과를 제시한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram) is one of ordered-DDs(Decision Diagrams) in which each node can take one of three decomposition types: Shannon, positive Davio and negative Davio decompositions. Whereas OBDD(Ordered Binary Decision Diagram) uses only the Shannon decomposition in each node, OPKFDD uses the three decompositions and generates representations of functions with smaller number of nodes than other DDs. However, this leads to the extreme difficulty of getting an optimal solution for the minimization of OPKFDD. Since an appropriate decomposition type has to be chosen for each node, the size of the representation is decided by the selection of the decomposition type as well as the variable ordering of the diagram. In an exhaustive method, n! · 3^(2^n - 1) cases should be considered to get an optimal solution, where n is the number of input variables. To get an optimal solution in such a large solution space, this paper presents a hybrid genetic algorithm for the optimization of OPKFDD and experimental results are given with various parameter values.
      번역하기

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram) is one of ordered-DDs(Decision Diagrams) in which each node can take one of three decomposition types: Shannon, positive Davio and negative Davio decompositions. Whereas OBDD(Ordered Binary ...

      OPKFDD(Ordered Pseudo-Kronecker Functional Decision Diagram) is one of ordered-DDs(Decision Diagrams) in which each node can take one of three decomposition types: Shannon, positive Davio and negative Davio decompositions. Whereas OBDD(Ordered Binary Decision Diagram) uses only the Shannon decomposition in each node, OPKFDD uses the three decompositions and generates representations of functions with smaller number of nodes than other DDs. However, this leads to the extreme difficulty of getting an optimal solution for the minimization of OPKFDD. Since an appropriate decomposition type has to be chosen for each node, the size of the representation is decided by the selection of the decomposition type as well as the variable ordering of the diagram. In an exhaustive method, n! · 3^(2^n - 1) cases should be considered to get an optimal solution, where n is the number of input variables. To get an optimal solution in such a large solution space, this paper presents a hybrid genetic algorithm for the optimization of OPKFDD and experimental results are given with various parameter values.

      더보기

      목차 (Table of Contents)

      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련연구
      • 3. 유전자 알고리즘을 이용한 OPKFDD의 최소화
      • 요약
      • Abstract
      • 1. 서론
      • 2. 관련연구
      • 3. 유전자 알고리즘을 이용한 OPKFDD의 최소화
      • 4. 구현 및 실험결과
      • 5. 결론 및 연구방향
      • 참고문헌
      • 저자소개
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼