RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707

      한글로보기

      https://www.riss.kr/link?id=A100520798

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      Pseudomonas pseudoalcaligenes KF707에서 정제한 protocatechuate 3,4-dioxygenase의 특징을 조사하기 위하여 pH안정성, 화학적 저해, 화학적 수식과 pH의존성 반응 상수에 대한 실험을 수행하였다. 이 효소는 pH 4.5~10.7에서 안정하였다. L-ascorbate와 glutathione은 Kis가 각각 0.17 mM과 0.86 mM인 경쟁적 저해제였으며, DL-dithiothreitol은 Kis 1.57 mM 및 Kii 8.08 mM의 비경쟁적 저해패턴을 나타내었다. Potassium cyanide, p-hydroxybenzoate 및 sodium azide는 Kis가 각각 55.7 mM, 0.22 mM 및15.64 mM이었으며, Kii는 각각94.1 mM, 8.08
      mM, 및 662.64 mM인 비경쟁적 저해패턴을 나타내었다. FeCl2는 Kis가 29 μM로 가장 우수한 경쟁적 저해제였으며, FeCl3, MnCl2, CoCl2, HgCl2, AlCl3도 각각 Kis가 1.21 mM, 0.85 mM, 3.98 mM, 0.17 mM 및 0.21 mM인 경쟁적 저해패턴을 보였다. 한편, 다른 금속이온들은 비경쟁적 저해패턴을 나타내었다. pH의존성 반응상수의 실험결과로부터 pK 6.2와 9.4의 촉매부위와 pK 5.5와 9.0의 결합부위가 존재함을 알 수 있었다. Lysine, cysteine, tyrosine, carboxyl과 histidine은 각각의 고유한 화학적 수식제에 의해 수식되었는데, 이는 이들 잔기들이 결합과 촉매에 관여한다는 것을 나타낸다. 위 결과를 토대로 화학적 메커니즘을 제시한다.
      번역하기

      Pseudomonas pseudoalcaligenes KF707에서 정제한 protocatechuate 3,4-dioxygenase의 특징을 조사하기 위하여 pH안정성, 화학적 저해, 화학적 수식과 pH의존성 반응 상수에 대한 실험을 수행하였다. 이 효소는 pH ...

      Pseudomonas pseudoalcaligenes KF707에서 정제한 protocatechuate 3,4-dioxygenase의 특징을 조사하기 위하여 pH안정성, 화학적 저해, 화학적 수식과 pH의존성 반응 상수에 대한 실험을 수행하였다. 이 효소는 pH 4.5~10.7에서 안정하였다. L-ascorbate와 glutathione은 Kis가 각각 0.17 mM과 0.86 mM인 경쟁적 저해제였으며, DL-dithiothreitol은 Kis 1.57 mM 및 Kii 8.08 mM의 비경쟁적 저해패턴을 나타내었다. Potassium cyanide, p-hydroxybenzoate 및 sodium azide는 Kis가 각각 55.7 mM, 0.22 mM 및15.64 mM이었으며, Kii는 각각94.1 mM, 8.08
      mM, 및 662.64 mM인 비경쟁적 저해패턴을 나타내었다. FeCl2는 Kis가 29 μM로 가장 우수한 경쟁적 저해제였으며, FeCl3, MnCl2, CoCl2, HgCl2, AlCl3도 각각 Kis가 1.21 mM, 0.85 mM, 3.98 mM, 0.17 mM 및 0.21 mM인 경쟁적 저해패턴을 보였다. 한편, 다른 금속이온들은 비경쟁적 저해패턴을 나타내었다. pH의존성 반응상수의 실험결과로부터 pK 6.2와 9.4의 촉매부위와 pK 5.5와 9.0의 결합부위가 존재함을 알 수 있었다. Lysine, cysteine, tyrosine, carboxyl과 histidine은 각각의 고유한 화학적 수식제에 의해 수식되었는데, 이는 이들 잔기들이 결합과 촉매에 관여한다는 것을 나타낸다. 위 결과를 토대로 화학적 메커니즘을 제시한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with Kis values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a Kis value of 1.57 mM and a Kii value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with Kis values of 55.7 mM, 0.22 mM, and 15.64 mM, and Kii values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. FeCl2 was the best competitive inhibitor with a Kis value of 29 μM. FeCl3, MnCl2, CoCl2, and AlCl3 were also competitive inhibitors with Kis values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.
      번역하기

      We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase w...

      We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with Kis values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a Kis value of 1.57 mM and a Kii value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with Kis values of 55.7 mM, 0.22 mM, and 15.64 mM, and Kii values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. FeCl2 was the best competitive inhibitor with a Kis value of 29 μM. FeCl3, MnCl2, CoCl2, and AlCl3 were also competitive inhibitors with Kis values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

      더보기

      목차 (Table of Contents)

      • Introduction
      • Materials and Methods
      • Results and Discussion
      • References
      • 초록
      • Introduction
      • Materials and Methods
      • Results and Discussion
      • References
      • 초록
      더보기

      참고문헌 (Reference)

      1 Kurahashi, T., "Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3, 4-dioxygenase" 45 : 7709-7721, 2006

      2 Martinez, M. V., "The biochemistry and control of enzymatic browning" 6 : 195-200, 1995

      3 Frazee, R. W., "The axial tyrosinate Fe3+ ligand in protocatechuate 3, 4-dioxygenase influences substrate binding and product release : evidence for new reaction cycle intermediates" 37 : 2131-2144, 1998

      4 Orville, A. M., "Structures of competitive inhibitor complexes of protocatechuate 3, 4-dioxygenase : multiple exogenous ligand binding orientations within the active site" 36 : 10039-10051, 1997

      5 Ohlendorf, D. H., "Structure of protocatechuate 3, 4-dioxygenase from Pseudomonas aeruginosa at 2. 15 Å resolution" 244 : 586-608, 1994

      6 Vetting, M. W., "Structure of acinetobacter strain adp1 protocatechuate 3, 4-dioxygenase at 2. 2 Å resolution : implications for the mechanism of an intradiol dioxygenase" 39 : 7943-7955, 2000

      7 Cleland, W. W., "Statistical analysis of enzyme kinetic data" 63 : 103-138, 1979

      8 Davis, M. L., "Spectroscopic investigation of reduced protocatechuate 3, 4-dioxygenase : charge-induced alterations in the active site iron coordination environment" 38 : 3676-3683, 1999

      9 Valley, M. P., "Roles of the equatorial tyrosyl iron ligand of protocatechuate 3, 4-dioxygenase in catalysis" 44 : 11024-11039, 2005

      10 Lukes, B., "Residual sulfur dioxide in finished malt : Colorimetric determination and relation to N-nitrosodimethylamine" 38 : 146-148, 1980

      1 Kurahashi, T., "Trigonal-bipyramidal geometry induced by an external water ligand in a sterically hindered iron salen complex, related to the active site of protocatechuate 3, 4-dioxygenase" 45 : 7709-7721, 2006

      2 Martinez, M. V., "The biochemistry and control of enzymatic browning" 6 : 195-200, 1995

      3 Frazee, R. W., "The axial tyrosinate Fe3+ ligand in protocatechuate 3, 4-dioxygenase influences substrate binding and product release : evidence for new reaction cycle intermediates" 37 : 2131-2144, 1998

      4 Orville, A. M., "Structures of competitive inhibitor complexes of protocatechuate 3, 4-dioxygenase : multiple exogenous ligand binding orientations within the active site" 36 : 10039-10051, 1997

      5 Ohlendorf, D. H., "Structure of protocatechuate 3, 4-dioxygenase from Pseudomonas aeruginosa at 2. 15 Å resolution" 244 : 586-608, 1994

      6 Vetting, M. W., "Structure of acinetobacter strain adp1 protocatechuate 3, 4-dioxygenase at 2. 2 Å resolution : implications for the mechanism of an intradiol dioxygenase" 39 : 7943-7955, 2000

      7 Cleland, W. W., "Statistical analysis of enzyme kinetic data" 63 : 103-138, 1979

      8 Davis, M. L., "Spectroscopic investigation of reduced protocatechuate 3, 4-dioxygenase : charge-induced alterations in the active site iron coordination environment" 38 : 3676-3683, 1999

      9 Valley, M. P., "Roles of the equatorial tyrosyl iron ligand of protocatechuate 3, 4-dioxygenase in catalysis" 44 : 11024-11039, 2005

      10 Lukes, B., "Residual sulfur dioxide in finished malt : Colorimetric determination and relation to N-nitrosodimethylamine" 38 : 146-148, 1980

      11 Ponting, J. D., "Refrigerated apple slices. Effects of pH, sulfites and calcium on texture" 36 : 349-350, 1971

      12 심현우, "Purification and Characterization of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707" 한국응용생명화학회 56 (56): 401-408, 2013

      13 Fujisawa, H., "Protocatechuate 3, 4 dioxygenase III. An oxygenated form of the enzyme as reaction intermediate" 247 : 4422-4428, 1972

      14 Mapson, L. W., "Preservation of peeled potato. Ⅲ. The inactivation of phenolase by heat" 12 : 54-58, 1961

      15 Dagleys, S., "Microbial degradation of aromatic compounds" 25 : 53-65, 1984

      16 Ashie, I. N. A., "Mechanisms for controlling enzymatic reactions in foods" 36 : 1-30, 1996

      17 Durham, D. R., "Intergeneric evolutionary homology revealed by the study of protocatechuate 3, 4-dioxygenase from Azotobacter vinelandii" 19 : 149-155, 1980

      18 Cho, Y. K., "Inactivation of pyrophosphate-dependent phosphofructokinase from Propionibacterium freudenreichii by pyridoxal 5’-phosphate" 263 : 5135-5140, 1988

      19 Price, N. C., "Fundamentals of Enzymology" Oxford University Press 1998

      20 Whitaker, J. R., "Food enzymes structure and mechanism" Chapman & Hall 271-307, 1995

      21 Friedman, M., "Food browning and its prevention : an overview" 44 : 631-653, 1996

      22 Engel, P. C., "Enzymology LabFax" Academic Press 175-190, 1996

      23 Joslyn, M. A., "Enzyme-catalyzed oxidative browning of fruit products" 3 : 1-44, 1951

      24 Kahn, V., "Effect of proteins, protein hydrolyzates and amino acids on o-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado, and banana" 50 : 111-115, 1985

      25 Bedrosian, K., "Effect of borates and other inhibitors on enzymatic browning in apple tissues" 13 : 722-726, 1959

      26 Montgomery, M. W., "Cysteine as an inhibitor of browning in pear juice concentrate" 48 : 951-952, 1983

      27 Orville, A. M., "Crystal structures of substrate and substrate analog complexes of protocatechuate 3, 4-dioxygenase : endogenous Fe3+ ligand displacement in response to substrate binding" 36 : 10052-10066, 1997

      28 Elgren, T. E., "Crystal structure and resonance raman studies of protocatechuate 3, 4-dioxygenase complexed with 3, 4-dihydroxyphenylacetate" 36 : 11504-11513, 1997

      29 Lundblad, R. L., "Chemical reagents for protein modification. Vol II" CRC Press 1-169, 1984

      30 Lundblad, R. L., "Chemical reagents for protein modification. Vol I" CRC Press 1-166, 1984

      31 True, A. E., "An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3, 4-dioxygenase" 29 : 10847-10854, 1990

      32 Kelly, S. H., "Action of a ring-cleaving oxygenase in preventing oxidase darkening of apple juice" 20 : 629-632, 1969

      33 Bradford, M., "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding" 72 : 248-254, 1976

      34 Lim, J. C., "A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A" 287 : 25596-25601, 2012

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-08-03 학술지명변경 외국어명 : Korean Journal of Life Science -> Journal of Life Science KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2003-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2001-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.37 0.37 0.42
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.43 0.43 0.774 0.09
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼