RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      인공신경망을 이용한 주조 스테인리스강의 열취화 민감도 평가 = Evaluation of Thermal Embrittlement Susceptibility in Cast Austenitic Stainless Steel Using Artificial Neural Network

      한글로보기

      https://www.riss.kr/link?id=A103654167

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.
      번역하기

      Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal ag...

      Cast austenitic stainless steel is used for several components, such as primary coolant piping, elbow, pump casing and valve bodies in light water reactors. These components are subject to thermal aging at the reactor operating temperature. Thermal aging results in spinodal decomposition of the delta-ferrite leading to increased strength and decreased toughness. This study shows that ferrite content can be predicted by use of the artificial neural network. The neural network has trained teaming data of chemical components and ferrite contents using backpropagation learning process. The predicted results of the ferrite content using trained neural network are in good agreement with experimental ones.

      더보기

      참고문헌 (Reference)

      1 "Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof" 2001

      2 "Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components" USNRC 1994

      3 "Low Temperature Aging Embrittlement of CF-8 Stainless Steel" 1-10, 1999

      4 "Learning Internal Representations by Error Propagation : in Parallel Distributed Processing" The MIT Press 1 : 675-695, 1986

      5 "Generic Aging Lessons Learned(GALL) Report" USNRC 2 : 2001

      6 "Fundamentals of Neural Network : Architectures" Prentice Hall 3-37, 1994

      7 "Ferrite Measurement and Control in Cast Duplex Stainless Steels" 126-164, 1982

      8 "Estimation of Fracture Toughness of CASS during Thermal Aging in LWR Systems" USNRC -1, 1994

      9 "Aging and Life Extension of Major Light Water Reactor Components" 146-186, 1993

      1 "Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof" 2001

      2 "Mechanical Properties of Thermally Aged Cast Stainless Steels from Shippingport Reactor Components" USNRC 1994

      3 "Low Temperature Aging Embrittlement of CF-8 Stainless Steel" 1-10, 1999

      4 "Learning Internal Representations by Error Propagation : in Parallel Distributed Processing" The MIT Press 1 : 675-695, 1986

      5 "Generic Aging Lessons Learned(GALL) Report" USNRC 2 : 2001

      6 "Fundamentals of Neural Network : Architectures" Prentice Hall 3-37, 1994

      7 "Ferrite Measurement and Control in Cast Duplex Stainless Steels" 126-164, 1982

      8 "Estimation of Fracture Toughness of CASS during Thermal Aging in LWR Systems" USNRC -1, 1994

      9 "Aging and Life Extension of Major Light Water Reactor Components" 146-186, 1993

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1998-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.25
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.24 0.23 0.506 0.06
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼