RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      전이 금속 산화물 기반 Interface-type 저항 변화 특성 향상 연구 동향 = Research Trends on Interface-type Resistive Switching Characteristics in Transition Metal Oxide

      한글로보기

      https://www.riss.kr/link?id=A108912956

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      저항 변화 메모리 소자(RRAM)는 저항 변화 특성을 기반으로 빠른 동작 속도, 간단한 소자 구조 및 고집적 구조의 구현을 통해 많은 양의 데이터를 효율적으로 처리할 수 있는 차세대 메모리 소자로 주목받고 있다. RRAM의 작동원리 중 하나로 알려진 interface type의 저항 변화 특성은 forming process를 수반하지 않고 소자 크기를 조절하여 낮은전류에서 구동이 가능하다는 장점을 갖는다. 그 중에서도 전이 금속 산화물 기반 RRAM 소자의 경우, 정확한 물질의 조성 조절 방법과 소자의 신뢰성 및 안정성과 같은 메모리 특성을 향상시키기 위해 다양한 연구가 진행 중에 있다. 본 논문에서는 이종 원소의 도핑, 다층 박막의 형성, 화학적 조성 조절 및 표면 처리 등의 방법을 이용하여 interface type 저항변화 특성의 저하를 방지하고 소자 특성을 향상시키기 위한 다양한 방법을 소개하고자 한다. 이를 통해 향상된 저항 변화 특성을 기반으로 한 고효율 차세대 비휘발성 메모리 소자의 구현 가능성을 제시한다.
      번역하기

      저항 변화 메모리 소자(RRAM)는 저항 변화 특성을 기반으로 빠른 동작 속도, 간단한 소자 구조 및 고집적 구조의 구현을 통해 많은 양의 데이터를 효율적으로 처리할 수 있는 차세대 메모리 소...

      저항 변화 메모리 소자(RRAM)는 저항 변화 특성을 기반으로 빠른 동작 속도, 간단한 소자 구조 및 고집적 구조의 구현을 통해 많은 양의 데이터를 효율적으로 처리할 수 있는 차세대 메모리 소자로 주목받고 있다. RRAM의 작동원리 중 하나로 알려진 interface type의 저항 변화 특성은 forming process를 수반하지 않고 소자 크기를 조절하여 낮은전류에서 구동이 가능하다는 장점을 갖는다. 그 중에서도 전이 금속 산화물 기반 RRAM 소자의 경우, 정확한 물질의 조성 조절 방법과 소자의 신뢰성 및 안정성과 같은 메모리 특성을 향상시키기 위해 다양한 연구가 진행 중에 있다. 본 논문에서는 이종 원소의 도핑, 다층 박막의 형성, 화학적 조성 조절 및 표면 처리 등의 방법을 이용하여 interface type 저항변화 특성의 저하를 방지하고 소자 특성을 향상시키기 위한 다양한 방법을 소개하고자 한다. 이를 통해 향상된 저항 변화 특성을 기반으로 한 고효율 차세대 비휘발성 메모리 소자의 구현 가능성을 제시한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and high-density implementation. Interface type resistive switching offer the advantage of low operation currents without the need for a forming process. Especially, for RRAM devices based on transition metal oxides, various studies are underway to enhance the memory characteristics, including precise material composition control and improving the reliability and stability of the device. In this paper, we introduce various methods, such as doping of heterogeneous elements, formation of multilayer films, chemical composition adjustment, and surface treatment to prevent degradation of interface type resistive switching properties and enhance the device characteristics. Through these approaches, we propose the feasibility of implementing high-efficient next-generation non-volatile memory devices based on improved resistive switching properties.
      번역하기

      Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and ...

      Resistive Random Access Memory (RRAM), based on resistive switching characteristics, is emerging as a next-generation memory device capable of efficiently processing large amounts of data through its fast operation speed, simple device structure, and high-density implementation. Interface type resistive switching offer the advantage of low operation currents without the need for a forming process. Especially, for RRAM devices based on transition metal oxides, various studies are underway to enhance the memory characteristics, including precise material composition control and improving the reliability and stability of the device. In this paper, we introduce various methods, such as doping of heterogeneous elements, formation of multilayer films, chemical composition adjustment, and surface treatment to prevent degradation of interface type resistive switching properties and enhance the device characteristics. Through these approaches, we propose the feasibility of implementing high-efficient next-generation non-volatile memory devices based on improved resistive switching properties.

      더보기

      참고문헌 (Reference)

      1 김수민 ; 이홍섭, "전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성" 한국마이크로전자및패키징학회 27 (27): 77-81, 2020

      2 이홍섭, "음이온 기반 멤리스터의 최신 기술동향 및 이슈" 한국마이크로전자및패키징학회 26 (26): 1-7, 2019

      3 S. Rehman, "Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2" 9 (9): 19387-, 2019

      4 S. Kim, "Tuning Resistive switching characteristics of Tantalum Oxide Memristors through Si Doping" 8 (8): 10262-, 2014

      5 S. Siegel, "Trade-Off between Data Retention and Switching Speed in Resistive Switching ReRAM Devices" 7 (7): 2000815-, 2021

      6 H. Zhao, "The enhancement of unipolar resistive switching behavior via an amorphous TiOx layer formation in Dy2O3-based forming-free RRAM" 89 : 12-16, 2013

      7 J. Kwon, "Surface-Dominated HfO2 Nanorod-Based Memristor Exhibiting Highly Linear and Symmetrical Conductance Modulation for High-Precision Neuromorphic Computing" 14 (14): 44550-44560, 2022

      8 W. Wang, "Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDsbased RRAM" 67 (67): 4884-4890, 2020

      9 S. Bhatti, "Spintronics based random access memory : a review" 20 (20): 530-548, 2017

      10 S. E. Kim, "Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures" 34 (34): 2106913-, 2022

      1 김수민 ; 이홍섭, "전기장 광화학 증착법에 의한 직접패턴 비정질 FeOx 박막의 제조 및 저항변화 특성" 한국마이크로전자및패키징학회 27 (27): 77-81, 2020

      2 이홍섭, "음이온 기반 멤리스터의 최신 기술동향 및 이슈" 한국마이크로전자및패키징학회 26 (26): 1-7, 2019

      3 S. Rehman, "Tuning of ionic mobility to improve the resistive switching behavior of Zn-doped CeO2" 9 (9): 19387-, 2019

      4 S. Kim, "Tuning Resistive switching characteristics of Tantalum Oxide Memristors through Si Doping" 8 (8): 10262-, 2014

      5 S. Siegel, "Trade-Off between Data Retention and Switching Speed in Resistive Switching ReRAM Devices" 7 (7): 2000815-, 2021

      6 H. Zhao, "The enhancement of unipolar resistive switching behavior via an amorphous TiOx layer formation in Dy2O3-based forming-free RRAM" 89 : 12-16, 2013

      7 J. Kwon, "Surface-Dominated HfO2 Nanorod-Based Memristor Exhibiting Highly Linear and Symmetrical Conductance Modulation for High-Precision Neuromorphic Computing" 14 (14): 44550-44560, 2022

      8 W. Wang, "Study on multilevel resistive switching behavior with tunable ON/OFF ratio capability in forming-free ZnO QDsbased RRAM" 67 (67): 4884-4890, 2020

      9 S. Bhatti, "Spintronics based random access memory : a review" 20 (20): 530-548, 2017

      10 S. E. Kim, "Sodium-Doped Titania Self-Rectifying Memristors for Crossbar Array Neuromorphic Architectures" 34 (34): 2106913-, 2022

      11 K. Jeon, "Self-rectifying resistive memory in passive crossbar arrays" 12 (12): 2968-, 2021

      12 K. Jeon, "Self-rectifying resistive memory in passive crossbar arrays" 12 (12): 2968-, 2021

      13 Q. Luo, "Self-rectifying and forming-free resistive-switching device for embedded memory application" 39 (39): 664-667, 2018

      14 U. Russo, "Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory(RRAM)devices" 56 (56): 193-200, 2009

      15 K. Huang, "Revisiting persistent hash table design for commercial non-volatile memory" IEEE 708-713, 2020

      16 K. Itoh, "Reviews and prospects of high-density RAM technology" 1 : 13-22, 2000

      17 S. S. Kim, "Review of semiconductor flash memory devices for material and process issues" 35 (35): 2200659-, 2023

      18 C. Chang, "Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM" 53 : 871-879, 2018

      19 G. Kim, "Retention Secured Nonlinear and Self-Rectifying Analog Charge Trap Memristor for Energy-Efficient Neuromorphic Hardware" 10 : 2205654-, 2023

      20 M. Kim, "Resistive switching properties for fluorine doped titania fabricated using atomic layer deposition" 10 (10): 2022

      21 A. Sawa, "Resistive switching in transition metal oxide" 11 (11): 28-, 2008

      22 V. Gupta, "Resistive random access memory: a review of device challenges" 37 (37): 377-390, 2020

      23 F. Zahoor, "Resistive random access memory(RRAM) : an overview of materials, switching mechanism, performance, multilevel cell(MLC)storage, modeling, and applications" 15 : 1-26, 2020

      24 F. Zahoor, "Resistive random access memory(RRAM) : an overview of materials, switching mechanism, performance, multilevel cell(MLC)storage, modeling, and applications" 15 : 1-26, 2020

      25 F. Zahoor, "Resistive random access memory(RRAM) : an overview of materials, switching mechanism, performance, multilevel cell(MLC)storage, modeling, and applications" 15 : 1-26, 2020

      26 V. Gupta, "Resistive random access memory : a review of device challenges" 37 (37): 377-390, 2020

      27 Minjae Kim ; Kyung-Mun Kang ; Yue Wang ; Akendra Singh Chabungbam ; Dong-eun Kim ; Hyung Nam Kim ; 박형호, "Resistive Switching Properties of N and F co-doped ZnO" 한국마이크로전자및패키징학회 29 (29): 53-58, 2022

      28 L. Shi, "Research progress on solutions to the sneak path issue in memristor crossbar arrays" 2 (2): 1811-1827, 2020

      29 Y. Wang, "Relationship between resistive switching and Mott transition in atomic layer deposition prepared La2Ti2O7-x thin film" 222 : 115050-, 2023

      30 Y. Syu, "Redox Reaction Switching Mechanism in RRAM Device with Pt/CoSiOx/TiN Structure" 32 (32): 545-547, 2011

      31 K. Moon, "RRAM-based synapse devices for neuromorphic systems" 213 : 421-451, 2019

      32 X. Hong, "Oxide-based RRAM materials for neuromorphic computing" 53 : 8720-8746, 2018

      33 H. Wang, "Overview of resistive random access memory(RRAM) : Materials, filament mechanisms, performance optimization, and prospects" 13 (13): 1900073-, 2019

      34 H. Wang, "Overview of resistive random access memory(RRAM) : Materials, filament mechanisms, performance optimization, and prospects" 13 (13): 1900073-, 2019

      35 R. Tominov, "Nanoscale-resistive switching in forming-free zinc oxide memristive structures" 12 (12): 455-, 2022

      36 A. Prakash, "Multilevel cell storage and resistance variability in resistive random access memory" 1 (1): 20160010-, 2016

      37 N. Das, "Multilevel bipolar electroforming-free resistive switching memory based on silicon oxynitride" 10 (10): 3506-, 2020

      38 V. Milo, "Multilevel HfO2-based RRAM devices for low-power neuromorphic networks" 7 (7): 2019

      39 B. R. Lee, "Micro-light-emitting diode with n-GaN/NiO/Au-based resistive-switching electrode for compact driving circuitry" 823 : 153762-, 2020

      40 G. Bersuker, "Metal oxide resistive memory switching mechanism based on conductive filament properties" 110 : 124518-, 2011

      41 J. N. Huang, "Memristive devices based on Cu-doped NbOx films with large self-rectifying ratio" 369 : 115732-, 2021

      42 Z. Zhang, "Memory materials and devices : From concept to application" 2 (2): 261-290, 2020

      43 A. Sebastian, "Memory devices and applications for in-memory computing" 15 (15): 529-544, 2020

      44 H. Lee, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM" 1-4, 2008

      45 J. C. Gonzalez-Rosillo, "Lithium-battery anode gains additional functionality for neuromorphic computing through metal–insulator phase separation" 32 (32): 1907465-, 2020

      46 H. Zhang, "Ionic doping effect in ZrO2 resistive switching memory" 96 (96): 2010

      47 B. Ku, "Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors" 735 : 1181-1188, 2018

      48 Y. Choi, "Insertion of Ag layer in TiN/SiNx/TiN RRAM and its effect on filament formation modeled by monte carlo simulation" 8 : 228720-228730, 2020

      49 H. Lv, "Improvement of endurance and switching stability of forming-free CuxO RRAM" IEEE 52-53, 2008

      50 W. Liu, "Impact of ultrathin Al2O3interlayers on resistive switching in TiOx thin films deposited by atomic layer deposition" 35 (35): 2017

      51 C. L. Lin, "Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM(RRAM)" 136 : 15-21, 2015

      52 A. Sawa, "Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕ Pr0. 7Ca0. 3MnO3 interface" 85 (85): 4073-4075, 2004

      53 J. Yoon, "Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2-x/TiN structure" 24 (24): 5086-5095, 2014

      54 D. S. Hyeon, "Highly Stable Forming-Free Bipolar Resistive Switching in Cu Layer Stacked Amorphous Carbon Oxide : Transition between C-C Bonding Complexes" 8 (8): 2100660-, 2021

      55 Y. Sun, "High On-Off Ratio Improvement of ZnOBased Forming-Free Memristor by Surface Hydrogen Annealing" 7 : 7382-7388, 2015

      56 H. Zhang, "Gd-doping effect on performance of HfO2based resistive switching memory devices using implantation approach" 98 (98): 2011

      57 M. Ismail, "Forming-free Pt/Al2O3/HfO2/HfAlOx/TiN memristor with controllable multilevel resistive switching and neuromorphic characteristics for artificial synapse" 892 : 162141-, 2022

      58 T. Hennen, "Forming-free Mott-oxide threshold selector nanodevice showing s-type NDR with high endurance (> 1012 cycles), excellent Vth stability (5 %), fast (< 10 ns) switching, and promising scaling properties" 8614618-, 2018

      59 C. H. Cheng, "Forming-Free SiGeOx/TiOy Resistive Random Access Memories Featuring Large Current Distribution Windows" 19 (19): 7916-7919, 2019

      60 M. Kim, "Filamentary and Interface-Type Memristors Based on Tantalum Oxide for Energy-Efficient Neuromorphic Hardware" 14 : 44561-44571, 2022

      61 L. Wang, "Excellent reistive switching properties of atomic layerdeposited Al2O3/HfO2/Al2O3 trilayer structure for non-volatile memory applications" 10 : 1-, 2015

      62 H. Lv, "Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory" 5 (5): 7764-, 2015

      63 X. Cao, "Enhanced switching ratio and long-term stability of flexible RRAM by anchoring polyvinylammonium on perovskite grains" 11 (11): 35914-35923, 2019

      64 S. Yu, "Emerging memory technologies : Recent trends and prospects" 8 (8): 43-56, 2016

      65 M. Ismail, "Electronic synaptic plasticity and analog switching characteristics in Pt/TiOx/AlOx/AlTaON/TaN multilayer RRAM for artificial synapses" 599 : 153906-, 2022

      66 D. S. Kim, "Electrochemically assembled Cu2O nanoparticles using crystallographically anisotropic functional metal ions and highly expeditious resistive switching via nanoparticle coarsening" 13 (13): 5987-5998, 2019

      67 A. Durgesh, "Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions" Wiley 119-132, 2021

      68 Y. Wang, "Electric field induced Mott transition and bipolar resistive switching in La2-Ti2O7-x thin film" 26 : 101395-, 2022

      69 J. Shin, "Effect of program/erase speed on switching uniformity in filament-type RRAM" 32 (32): 958-960, 2011

      70 Y. Wu, "Dynamic resistive switching devices for neuromorphic computing" 37 (37): 024003-, 2021

      71 Y. Zhong, "Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing" 12 (12): 408-, 2021

      72 J. Lee, "Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications" 5703393-, 2010

      73 D. Niu, "Design trade-offs for high density cross-point resistive memory"

      74 R. Schmitt, "Design of oxygen vacancy configuration for memristive systems" 11 (11): 8881-, 2017

      75 C. Chou, "Crossbar array of selector-less TaOx/TiO2 bilayer RRAM" 55 (55): 2220-2223, 2015

      76 S. Y. Wang, "Controllable oxygen vacancies to enhance resistive switching performance in a ZrO2-based RRAM with embedded Mo layer" 21 (21): 495201-, 2010

      77 E. Lim, "Conduction mechanism of valence change resistive switching memory : A survey" 4 (4): 586-613, 2015

      78 T. S. Lee, "Compliance current-controlled conducting filament formation in tantalum oxide-based RRAM devices with different top electrodes" 2 (2): 1154-1161, 2020

      79 Y. Qi, "Comparisons of switching characteristics between Ti/Al2O3/Pt and TiN/Al2O3/Pt RRAM devices with various compliance currents" 33 (33): 045003-, 2018

      80 R. Muenstermann, "Coexistence of Filamentary and Homogeneous Resistive Switching in Fe-Doped SrTiO3 Thin-Film Memristive Devices" 22 (22): 4819-4822, 2010

      81 A. Gismatulin, "Charge transport mechanism in the forming-free memristor based on silicon nitride" 11 (11): 2417-, 2021

      82 J. C. Wang, "Characterization of gadolinium oxide thin films with CF4 plasma treatment for resistive switching memory applications" 276 : 497-501, 2013

      83 W. Banerjee, "Challenges and applications of emerging nonvolatile memory devices" 9 (9): 1029-, 2020

      84 M. K. Kim, "CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory" 7 (7): 1341-, 2021

      85 Y. Wang, "Bipolar Resistive Switching in Lanthanum Titanium Oxide and an Increased On/Off Ratio Using an Oxygen-Deficient ZnO Interlayer" 14 (14): 17682-17690, 2022

      86 S. Petrenko, "Big Data Technologies for Monitoring of Computer Security : A Case Study of the Russian Federation" Springer International Publishing 1-249, 2018

      87 X. Li, "Atomic layer deposition of Ga2O3/ZnO composite films for high-performance forming-free resistive switching memory" 12 (12): 30538-30547, 2020

      88 J. Yin, "An 8kb RRAM-based nonvolatile SRAM with Pre-decoding and fast storage/restoration time" 13 (13): 531-, 2022

      89 K. J. Zhou, "Abnormal high resistive state current mechanism transformation in Ti/HfO2/TiN resistive random access memory" 41 (41): 224-227, 2019

      90 Y. Zhang, "A system hierarchy for brain-inspired computing" 586 (586): 378-384, 2020

      91 M. Wu, "A novel high-performance and energy-efficient RRAM device with multi-functional conducting nanofilaments" 82 : 105717-, 2021

      92 X. Hong, "A novel geometry of ECM-based RRAM with improved variability" 2018

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼