RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      시스템의 정밀 모델링을 위한 자율분산 신경망 = Self-organized Distributed Networks for Precise Modelling of a System

      한글로보기

      https://www.riss.kr/link?id=A100584253

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      다차원 시스템(multidimensional system)에 대한 정확한 모델링을 위해 “자율 분산 신경망(Self-organized Distirbuted Networks, SODN)”을 제안하였다. 제안한 신경망은 자율 신경망(Self-organized Networks)과 다수의 소규모 다층 신경망(Multilayer Neural Networks)이 조합되어 지역적 병렬 학습을 수행하는 부분 학습망으로서 학습 속도가 빠르고 학습의 정밀도를 높일 수 있으며 타 부분망 학습에서 문제가 되는 과다한 학습 메모리 소요와 학습되니 않은 영역에 대한 낮은 일반화능력 등의 문제가 보완된 새로운 신경망이다. 학습 실험 결과, 제안한 신경망은 기존의 다층 신경망과 RBF(Radial Basis Function) 신경망에 비해서 우수한 성능을 보였다.
      번역하기

      다차원 시스템(multidimensional system)에 대한 정확한 모델링을 위해 “자율 분산 신경망(Self-organized Distirbuted Networks, SODN)”을 제안하였다. 제안한 신경망은 자율 신경망(Self-organized Networks)과 다...

      다차원 시스템(multidimensional system)에 대한 정확한 모델링을 위해 “자율 분산 신경망(Self-organized Distirbuted Networks, SODN)”을 제안하였다. 제안한 신경망은 자율 신경망(Self-organized Networks)과 다수의 소규모 다층 신경망(Multilayer Neural Networks)이 조합되어 지역적 병렬 학습을 수행하는 부분 학습망으로서 학습 속도가 빠르고 학습의 정밀도를 높일 수 있으며 타 부분망 학습에서 문제가 되는 과다한 학습 메모리 소요와 학습되니 않은 영역에 대한 낮은 일반화능력 등의 문제가 보완된 새로운 신경망이다. 학습 실험 결과, 제안한 신경망은 기존의 다층 신경망과 RBF(Radial Basis Function) 신경망에 비해서 우수한 성능을 보였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.
      번역하기

      A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are cause...

      A new neural network structure called Self-organized Distributed Networks (SODN) is proposed for developing the neural network-based multidimensional system models. The learning with the proposed networks is fast and precise. Such properties are caused from the local learning mechanism. The structure of the networks is combination of dual networks such as self-organized networks and multilayered local networks. Each local networks learns only data in a sub-region. Large number of memory requirements and low generalization capability for the untrained region, which are drawbacks of conventional local network learning, are overcomed in the proposed networks. The simulation results of the proposed networks show better performance than the standard multilayer neural networks and the Radial Basis function(RBF) networks.

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼