RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      YOLOv2와 무인항공기를 이용한 자동차 탐지에 관한 연구 = The Study of Car Detection on the Highway using YOLOv2 and UAVs

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose fast object detection method of the cars by applying YOLOv2(You Only Look Once version 2) and UAVs (Unmanned Aerial Vehicles) while on the highway. We operated Darknet, OpenCV, CUDA and Deep Learning Server(SDX-4185) for our simulation environment. YOLOv2 is recently developed fast object detection algorithm that can detect various scale objects as fast speed. YOLOv2 convolution network algorithm allows to calculate probability by one pass evaluation and predicts location of each cars, because object detection process has simple single network. In our result, we could find cars on the highway area as fast speed and we could apply to the real time.
      번역하기

      In this paper, we propose fast object detection method of the cars by applying YOLOv2(You Only Look Once version 2) and UAVs (Unmanned Aerial Vehicles) while on the highway. We operated Darknet, OpenCV, CUDA and Deep Learning Server(SDX-4185) for our ...

      In this paper, we propose fast object detection method of the cars by applying YOLOv2(You Only Look Once version 2) and UAVs (Unmanned Aerial Vehicles) while on the highway. We operated Darknet, OpenCV, CUDA and Deep Learning Server(SDX-4185) for our simulation environment. YOLOv2 is recently developed fast object detection algorithm that can detect various scale objects as fast speed. YOLOv2 convolution network algorithm allows to calculate probability by one pass evaluation and predicts location of each cars, because object detection process has simple single network. In our result, we could find cars on the highway area as fast speed and we could apply to the real time.

      더보기

      참고문헌 (Reference)

      1 Redmon Joseph, "You Only Look Once: Unified, Real-Time Object Detection" 779-788, 2016

      2 Alexey, "Yolo-v2 Windows and Linux version"

      3 Joseph Redmon, "YOLO9000: Better, Faster, Stronger" 7263-7271, 2017

      4 J. Leitloff, "Vehicle extraction from very high resolution satellite images of city areas" 48 (48): 2795-2806, 2010

      5 X. Chen, "Vehicle Detection from UAVs by Using SIFT with Implicit Shape Model" 3139-3144, 2013

      6 S. Liao, "Learning Multi-scale Block Local Binary Patterns for Face Recognition" 828-837, 2007

      7 N. Dalal, "Histograms of oriented gradients for human detection" IEEE Computer Society 1 : 886-893, 2005

      8 Mahyar Najibi, "G-CNN: An Iterative Grid Based Object Detector" 2369-2377, 2016

      9 Shaoqing Ren, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 39 (39): 1137-1149, 2017

      10 K. Kozempel, "Fast Vehicle Detection and Tracking in Aerial Image Bursts" 38 (38): 175-180, 2009

      1 Redmon Joseph, "You Only Look Once: Unified, Real-Time Object Detection" 779-788, 2016

      2 Alexey, "Yolo-v2 Windows and Linux version"

      3 Joseph Redmon, "YOLO9000: Better, Faster, Stronger" 7263-7271, 2017

      4 J. Leitloff, "Vehicle extraction from very high resolution satellite images of city areas" 48 (48): 2795-2806, 2010

      5 X. Chen, "Vehicle Detection from UAVs by Using SIFT with Implicit Shape Model" 3139-3144, 2013

      6 S. Liao, "Learning Multi-scale Block Local Binary Patterns for Face Recognition" 828-837, 2007

      7 N. Dalal, "Histograms of oriented gradients for human detection" IEEE Computer Society 1 : 886-893, 2005

      8 Mahyar Najibi, "G-CNN: An Iterative Grid Based Object Detector" 2369-2377, 2016

      9 Shaoqing Ren, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks" 39 (39): 1137-1149, 2017

      10 K. Kozempel, "Fast Vehicle Detection and Tracking in Aerial Image Bursts" 38 (38): 175-180, 2009

      11 T. Moranduzzo, "Detecting Cars in UAV Images with a Catalog-Based Approach" 52 (52): 6356-6367, 2014

      12 M. Elmiktay, "Car Detection in High-Resolution Urban Scenes Using Multiple Image Descriptors" 4299-4304, 2014

      13 D. Lenhart, "Automatic Traffic Monitoring Based On Aerial Image Sequences" 18 (18): 400-405, 2008

      14 W. Yao, "Airborne traffic monitoring in large areas using lidar data" 33 (33): 3930-3945, 2012

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2017-12-01 평가 등재후보로 하락 (계속평가) KCI등재후보
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-06-22 학술지등록 한글명 : 전기학회 논문지 P권
      외국어명 : THE TRANSACTIONS OF THE KOREAN INSTITUTE OF ELECTRICAL ENGINEERS : P
      KCI등재후보
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.18
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.17 0.16 0.346 0.13
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼