RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Flexible transparent electrodes made of core-shell-structured carbon/ metal hybrid nanofiber mesh films fabricated via electrospinning and electroplating

      한글로보기

      https://www.riss.kr/link?id=A104339139

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The development of practical flexible transparent electrodes is one of the major core technology fields for future nanoscale optoelectronics. Despite the many efforts to replace the indium tin oxide (ITO) electrode, preparing practical alternatives that satisfy the essential requirements of flexible transparent electrodes remains a challenge. In this work, core-shell-structured carbon/metal hybrid mesh (CSCMHM) films, comprised of a metal layer coated onto conductive carbon nanofiber network structures, were fabricated using electrospinning and electroplating and demonstrated potential for use as flexible transparent electrodes. In contrast to previously described techniques that use conventional polymer fibers as sacrificial structures, the conductive carbon nanofibers used in the current technique that we developed provided bi-functionality: they formed conductive core channels and artificial supports of the metal structures. The CS-CMHM films displayed superior optoelectrical, mechanical, and thermal properties: they transmitted ~91% of visible light, showed a low sheet resistance of ~2.7 U/sq, and displayed excellent mechanical stability even after 10000 cycles of bending the films to a radius of 5 mm; also, applying a voltage of only 3 V to a transparent heater based on CS-CMHM films resulted in the temperature of the film surface increasing very rapidly in the first 20 s, and soon thereafter reaching ~280 C. Based on these results, we believe that the use of CS-CMHM films and the process we developed to fabricate them open up great opportunities for high-performance flexible transparent electronics.
      번역하기

      The development of practical flexible transparent electrodes is one of the major core technology fields for future nanoscale optoelectronics. Despite the many efforts to replace the indium tin oxide (ITO) electrode, preparing practical alternatives th...

      The development of practical flexible transparent electrodes is one of the major core technology fields for future nanoscale optoelectronics. Despite the many efforts to replace the indium tin oxide (ITO) electrode, preparing practical alternatives that satisfy the essential requirements of flexible transparent electrodes remains a challenge. In this work, core-shell-structured carbon/metal hybrid mesh (CSCMHM) films, comprised of a metal layer coated onto conductive carbon nanofiber network structures, were fabricated using electrospinning and electroplating and demonstrated potential for use as flexible transparent electrodes. In contrast to previously described techniques that use conventional polymer fibers as sacrificial structures, the conductive carbon nanofibers used in the current technique that we developed provided bi-functionality: they formed conductive core channels and artificial supports of the metal structures. The CS-CMHM films displayed superior optoelectrical, mechanical, and thermal properties: they transmitted ~91% of visible light, showed a low sheet resistance of ~2.7 U/sq, and displayed excellent mechanical stability even after 10000 cycles of bending the films to a radius of 5 mm; also, applying a voltage of only 3 V to a transparent heater based on CS-CMHM films resulted in the temperature of the film surface increasing very rapidly in the first 20 s, and soon thereafter reaching ~280 C. Based on these results, we believe that the use of CS-CMHM films and the process we developed to fabricate them open up great opportunities for high-performance flexible transparent electronics.

      더보기

      참고문헌 (Reference)

      1 C. H. Seager, 10 : 1435-1446, 1974

      2 J. -K. Song, "Wearable force touch sensor array using a flexible and transparent electrode" 27 : 1605286-, 2017

      3 Z. Wu, "Transparent, conductive carbon nanotube films" 305 : 1273-1276, 2004

      4 H. Wu, "Transparent electrode based on a metal nanotrough network" 8 : 421-425, 2013

      5 A. R. Rathmell, "The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films" 22 : 3558-3563, 2010

      6 T. H. Ko, "The Influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization" 43 : 589-600, 1991

      7 B. W. An, "Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability" 16 : 471-478, 2016

      8 B. W. An, "Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity" 14 : 6322-6328, 2014

      9 S. Tsuyoshi, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors" 8 : 494-499, 2009

      10 J. -Y. Lee, "Solution processed metal nanowire mesh transparent electrodes" 8 : 689-692, 2008

      1 C. H. Seager, 10 : 1435-1446, 1974

      2 J. -K. Song, "Wearable force touch sensor array using a flexible and transparent electrode" 27 : 1605286-, 2017

      3 Z. Wu, "Transparent, conductive carbon nanotube films" 305 : 1273-1276, 2004

      4 H. Wu, "Transparent electrode based on a metal nanotrough network" 8 : 421-425, 2013

      5 A. R. Rathmell, "The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films" 22 : 3558-3563, 2010

      6 T. H. Ko, "The Influence of pyrolysis on physical properties and microstructure of modified PAN fibers during carbonization" 43 : 589-600, 1991

      7 B. W. An, "Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability" 16 : 471-478, 2016

      8 B. W. An, "Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity" 14 : 6322-6328, 2014

      9 S. Tsuyoshi, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors" 8 : 494-499, 2009

      10 J. -Y. Lee, "Solution processed metal nanowire mesh transparent electrodes" 8 : 689-692, 2008

      11 D. J. Lipomi, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes" 6 : 788-792, 2011

      12 S. De, "Size effects and the problem with percolation in nanostructured transparent conductors" 4 : 7064-7072, 2010

      13 J. Mittal, "Single step carbonization and graphitization of highly stabilized PAN fibers" 35 : 1196-1197, 1997

      14 Z. Yu, "Silver nanowire-polymer composite electrodes for efficient polymer solar cells" 23 : 4453-4457, 2011

      15 S. De, "Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios" 3 : 1767-1774, 2009

      16 R. B. Mathur, "Shrinkage behaviour of modified PAN precursors-its influence on the properties of resulting carbon fibre" 14 : 179-187, 1986

      17 S. An, "Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating" 28 : 7149-7154, 2016

      18 P. -C. Hsu, "Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires" 4 : 1-7, 2013

      19 P. C. Hsu, "Passivation coating on electrospun copper nanofibers for stable transparent electrodes" 6 : 5150-5156, 2012

      20 J. Li, "Organic light-emitting diodes having carbon nanotube anodes" 6 : 2472-2477, 2006

      21 J. W. Huh, "New approach for fabricating hybridstructured metal mesh films for flexible transparent electrodes by the combination of electrospinning and metal deposition" 27 : 4753029-, 2016

      22 K. S. Kim, "Large-scale pattern growth of graphene films for stretchable transparent electrodes" 457 : 706-710, 2009

      23 G. Eda, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material" 3 : 270-274, 2008

      24 T. K. Ko, "Influence of continuous stabilization on the physical properties and microstructure of PAN-based carbon fibers" 42 : 1949-1957, 1991

      25 M. Vosgueritchian, "Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes" 22 : 421-428, 2012

      26 X. Li, "Highly conducting graphene sheets and Langmuir-Blodgett films" 3 : 538-542, 2008

      27 H. Sirringhaus, "High-resolution inkjet printing of all-polymer transistor circuits" 290 : 2123-2126, 2000

      28 M. Trinquecoste, "High temperature thermal and mechanical properties of high tensile carbon single filaments" 34 : 923-929, 1996

      29 G. P. Kushto, "Flexible organic photovoltaics using conducting polymer electrodes" 86 : 093502-, 2005

      30 J. W. Kim, "Fabrication of three-dimensional nanostructure-embedded ITO and its application as a transparent electrode for high-efficiency solution processable organic photovoltaic devices" 9 : 3033-3039, 2017

      31 D. S. Hecht, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures" 23 : 1482-1513, 2011

      32 H. Wu, "Electrospun metal nanofiber webs as high-performance transparent electrode" 10 : 4242-4248, 2010

      33 P. Rangarajan, "Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers" 43 : 2699-2709, 2002

      34 R. G. Gordon, "Criteria for choosing transparent conductors" 25 : 52-57, 2000

      35 H. -J. Jeon, "Complex high-aspect-ratio metal nanostructures by secondary sputtering combined with block copolymer self-assembly" 28 : 8439-8445, 2016

      36 J. W. Huh, "Characteristics of organic light-emitting diodes with conducting polymer anodes on plastic substrates" 103 : 044502-, 2008

      37 S. Bae, "Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Roll-to-roll production of 30-inch graphene films for transparent electrodes" 5 : 574-578, 2010

      38 M. S. A. Rahaman, "A review of heat treatment on polyacrylonitrile fiber" 92 : 1421-1432, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2008-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2007-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2003-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.8 0.18 1.17
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.92 0.77 0.297 0.1
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼