RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      고에너지 물질의 핫 스팟 기반 충격파-폭굉 천이 현상에 대한멀티스케일 해석. Part A: 고에너지 물질의 반응속도식 추출 = A Hot Spot Based Shock to Detonation Transition Simulation using Multi-Scale Approach Part A: Extraction of Chemical Kinetics of Energetic Material

      한글로보기

      https://www.riss.kr/link?id=A105962305

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models utilize the compression and pressure properties of the reacting mixture for quantifying their reaction rates. However, it has long been known that shock initiation of detonation is controlled by local reaction sites called ‘hot spots.’ In this study, a hot spot model based on the temperature-dependent Arrhenius reaction rate is developed. The complex reaction process of target explosive is addressed by conducting the Differential Scanning Calorimetry (DSC) while the rate of reaction is determined using the Friedman isoconversional method.
      번역하기

      Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models util...

      Empirical and phenomenological hydrodynamic reactive flow models, such as Ignition and Growth and Johnson-Tang-Forest, have been effective in predicting shock initiation and detonation characteristics of various energetic substances. These models utilize the compression and pressure properties of the reacting mixture for quantifying their reaction rates. However, it has long been known that shock initiation of detonation is controlled by local reaction sites called ‘hot spots.’ In this study, a hot spot model based on the temperature-dependent Arrhenius reaction rate is developed. The complex reaction process of target explosive is addressed by conducting the Differential Scanning Calorimetry (DSC) while the rate of reaction is determined using the Friedman isoconversional method.

      더보기

      참고문헌 (Reference)

      1 J.N. Johnson, "Shock-Wave Initiation of Heterogeneous Reactive Solids" 57 : 4323-4334, 1985

      2 E.L. Lee, "Phenomenological Model of Shock Initiation in Heterogeneous Explosives" 23 : 2362-2372, 1980

      3 C. Owens, "LLNL Explosives Reference Guide, Lawrence Livermore National Laboratory" LLNL 2003

      4 H.L. Friedman, "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry, Application to a Phenolic Plastic" 6 : 183-195, 1963

      5 Y. Kim, "Isoconversional Method for Extracting Reaction Kinetics of Aluminized Cyclotrimethylene-Trinitramine for Propulsion" 32 : 777-784, 2016

      6 S. Vyazovkin, "ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data" 520 : 1-19, 2011

      7 B. Roduit, "Evaluating SADT by Advanced Kinetics-based Simulation Approach" 93 : 153-161, 2008

      8 C.F. Melius, "Chemistry and Physics of Energetic Materials" Springer Netherlands 51-78, 1990

      9 A.K. Burnham, "A Historical and Current Perspective on Predicting Thermal Cookoff Behavior" 89 : 407-415, 2007

      1 J.N. Johnson, "Shock-Wave Initiation of Heterogeneous Reactive Solids" 57 : 4323-4334, 1985

      2 E.L. Lee, "Phenomenological Model of Shock Initiation in Heterogeneous Explosives" 23 : 2362-2372, 1980

      3 C. Owens, "LLNL Explosives Reference Guide, Lawrence Livermore National Laboratory" LLNL 2003

      4 H.L. Friedman, "Kinetics of Thermal Degradation of Char-Forming Plastics from Thermogravimetry, Application to a Phenolic Plastic" 6 : 183-195, 1963

      5 Y. Kim, "Isoconversional Method for Extracting Reaction Kinetics of Aluminized Cyclotrimethylene-Trinitramine for Propulsion" 32 : 777-784, 2016

      6 S. Vyazovkin, "ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data" 520 : 1-19, 2011

      7 B. Roduit, "Evaluating SADT by Advanced Kinetics-based Simulation Approach" 93 : 153-161, 2008

      8 C.F. Melius, "Chemistry and Physics of Energetic Materials" Springer Netherlands 51-78, 1990

      9 A.K. Burnham, "A Historical and Current Perspective on Predicting Thermal Cookoff Behavior" 89 : 407-415, 2007

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2007-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.31 0.31 0.29
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.27 0.25 0.632 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼