RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      앙상블 방법에 따른 WRF/CMAQ 수치 모의 결과 비교 연구 = 2013년 부산지역 고농도 PM<SUB>10</SUB> 사례

      한글로보기

      https://www.riss.kr/link?id=A102144924

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract) kakao i 다국어 번역

      To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly PM<SUB>10</SUB> concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean PM<SUB>10</SUB> concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.
      번역하기

      To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weigh...

      To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly PM<SUB>10</SUB> concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean PM<SUB>10</SUB> concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.

      더보기

      참고문헌 (Reference)

      1 유철, "수도권 지역의 대기환경관리 시행계획 추진결과 평가를 위한대기질 모델링 적용 방법" 한국환경과학회 20 (20): 1647-1661, 2011

      2 김세현, "기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증" 한국기상학회 25 (25): 67-83, 2015

      3 신혜정, "고농도 미세먼지 사례 특성 분석 - 2014년 2월 사례를 중심으로 -" 한국도시환경학회 14 (14): 223-232, 2014

      4 문윤섭, "WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정" 한국지구과학회 32 (32): 276-293, 2011

      5 Leith, C.E., "Theoretical skill of Monte Cario forecasts" 102 : 409-418, 1974

      6 National Institute of Environmental Research, "Studies on the optimization method for improving the accuracy of air quality modeling, Korea" 2014

      7 Epstein, E.S., "Stochastic dynamic prediction" 21 : 739-759, 1969

      8 Vautard, R., "Skill and uncertainty of a regional air quality model ensemble" 43 : 4822-4832, 2009

      9 Baker, L., "Representation of model error in a convective-scale ensemble prediction system" 21 : 19-39, 2014

      10 Monache, L.D., "Probabilistic aspects of meteorological and ozone regional ensemble forecasts" 11 : 2006

      1 유철, "수도권 지역의 대기환경관리 시행계획 추진결과 평가를 위한대기질 모델링 적용 방법" 한국환경과학회 20 (20): 1647-1661, 2011

      2 김세현, "기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증" 한국기상학회 25 (25): 67-83, 2015

      3 신혜정, "고농도 미세먼지 사례 특성 분석 - 2014년 2월 사례를 중심으로 -" 한국도시환경학회 14 (14): 223-232, 2014

      4 문윤섭, "WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정" 한국지구과학회 32 (32): 276-293, 2011

      5 Leith, C.E., "Theoretical skill of Monte Cario forecasts" 102 : 409-418, 1974

      6 National Institute of Environmental Research, "Studies on the optimization method for improving the accuracy of air quality modeling, Korea" 2014

      7 Epstein, E.S., "Stochastic dynamic prediction" 21 : 739-759, 1969

      8 Vautard, R., "Skill and uncertainty of a regional air quality model ensemble" 43 : 4822-4832, 2009

      9 Baker, L., "Representation of model error in a convective-scale ensemble prediction system" 21 : 19-39, 2014

      10 Monache, L.D., "Probabilistic aspects of meteorological and ozone regional ensemble forecasts" 11 : 2006

      11 Jang, I.-S., "PM10 forecasting status and improvement measures" 2014

      12 Kim, D.Y., "PM analysis using CMAQ in Seoul metropolitan area" 6 : 1-43, 2009

      13 Solazzo, E., "Model evaluation and ensemble modeling of surface-levle-ozone in Europe and North America in the context of AQMEII" 53 : 60-74, 2012

      14 Djalalova, I., "Ensemble and bias-correction techniqeus for air quality model forecsts of surface O3 and PM2.5 during the TEXAQS-Ⅱ experiment of 2006" 44 : 455-467, 2010

      15 Huijnen, V., "Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models" 10 : 3273-3296, 2010

      16 Monteiro, A., "Bias correction techniques to improve air quality ensemble predictions: Focus on O3 and PM over Portugal" 18 (18): 533-546, 2013

      17 Mckeen, S., "Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004" 110 : 2005

      18 Pagowski, M., "Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts" 40 : 3240-3250, 2006

      19 Monache, L.D., "An ensemble air-quality forecast over western Europe during an ozone episode" 37 : 3469-3474, 2003

      20 Žabkar, R., "A WRF/Chem sensitivity study using ensemble modeling for a high ozone episode in Slovenia and the Northern Adriatic area" 77 : 990-1004, 2013

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 계속평가 신청대상 (등재유지)
      2018-01-01 평가 우수등재학술지 선정 (계속평가)
      2017-04-06 학술지명변경 외국어명 : Journal of Korean Society for Atmospheric Environmnet -> Journal of Korean Society for Atmospheric Environment  KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2000-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.51 0.51 0.54
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.51 0.54 0.754 0.3
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼