To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weigh...

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A102144924
2016
Korean
539
KCI등재,SCOPUS,ESCI
학술저널
513-525(13쪽)
0
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weigh...
To propose an effective ensemble methods in predicting PM<SUB>10</SUB> concentration, six experiments were designed by different ensemble average methods (e.g., non-weighted, single weighted, and cluster weighted methods). The single weighted method was calculated the weighted value using both multiple regression analysis and singular value decomposition and the cluster weighted method was estimated the weighted value based on temperature, relative humidity, and wind component using multiple regression analysis. The effects of ensemble average methods were significantly better in weighted average than non-weight. The results of ensemble experiments using weighted average methods were distinguished according to methods calculating the weighted value. The single weighted average method using multiple regression analysis showed the highest accuracy for hourly PM<SUB>10</SUB> concentration, and the cluster weighted average method based on relative humidity showed the highest accuracy for daily mean PM<SUB>10</SUB> concentration. However, the result of ensemble spread analysis showed better reliability in the single weighted average method than the cluster weighted average method based on relative humidity. Thus, the single weighted average method was the most effective method in this study case.
참고문헌 (Reference)
1 유철, "수도권 지역의 대기환경관리 시행계획 추진결과 평가를 위한대기질 모델링 적용 방법" 한국환경과학회 20 (20): 1647-1661, 2011
2 김세현, "기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증" 한국기상학회 25 (25): 67-83, 2015
3 신혜정, "고농도 미세먼지 사례 특성 분석 - 2014년 2월 사례를 중심으로 -" 한국도시환경학회 14 (14): 223-232, 2014
4 문윤섭, "WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정" 한국지구과학회 32 (32): 276-293, 2011
5 Leith, C.E., "Theoretical skill of Monte Cario forecasts" 102 : 409-418, 1974
6 National Institute of Environmental Research, "Studies on the optimization method for improving the accuracy of air quality modeling, Korea" 2014
7 Epstein, E.S., "Stochastic dynamic prediction" 21 : 739-759, 1969
8 Vautard, R., "Skill and uncertainty of a regional air quality model ensemble" 43 : 4822-4832, 2009
9 Baker, L., "Representation of model error in a convective-scale ensemble prediction system" 21 : 19-39, 2014
10 Monache, L.D., "Probabilistic aspects of meteorological and ozone regional ensemble forecasts" 11 : 2006
1 유철, "수도권 지역의 대기환경관리 시행계획 추진결과 평가를 위한대기질 모델링 적용 방법" 한국환경과학회 20 (20): 1647-1661, 2011
2 김세현, "기상청 고해상도 국지 앙상블 예측 시스템 구축 및 성능 검증" 한국기상학회 25 (25): 67-83, 2015
3 신혜정, "고농도 미세먼지 사례 특성 분석 - 2014년 2월 사례를 중심으로 -" 한국도시환경학회 14 (14): 223-232, 2014
4 문윤섭, "WRF-SMOKE-CMAQ(MADRID)을 이용한 한반도 봄철 황사(PM10)의 농도 추정" 한국지구과학회 32 (32): 276-293, 2011
5 Leith, C.E., "Theoretical skill of Monte Cario forecasts" 102 : 409-418, 1974
6 National Institute of Environmental Research, "Studies on the optimization method for improving the accuracy of air quality modeling, Korea" 2014
7 Epstein, E.S., "Stochastic dynamic prediction" 21 : 739-759, 1969
8 Vautard, R., "Skill and uncertainty of a regional air quality model ensemble" 43 : 4822-4832, 2009
9 Baker, L., "Representation of model error in a convective-scale ensemble prediction system" 21 : 19-39, 2014
10 Monache, L.D., "Probabilistic aspects of meteorological and ozone regional ensemble forecasts" 11 : 2006
11 Jang, I.-S., "PM10 forecasting status and improvement measures" 2014
12 Kim, D.Y., "PM analysis using CMAQ in Seoul metropolitan area" 6 : 1-43, 2009
13 Solazzo, E., "Model evaluation and ensemble modeling of surface-levle-ozone in Europe and North America in the context of AQMEII" 53 : 60-74, 2012
14 Djalalova, I., "Ensemble and bias-correction techniqeus for air quality model forecsts of surface O3 and PM2.5 during the TEXAQS-Ⅱ experiment of 2006" 44 : 455-467, 2010
15 Huijnen, V., "Comparison of OMI NO2 tropospheric columns with an ensemble of global and European regional air quality models" 10 : 3273-3296, 2010
16 Monteiro, A., "Bias correction techniques to improve air quality ensemble predictions: Focus on O3 and PM over Portugal" 18 (18): 533-546, 2013
17 Mckeen, S., "Assessment of an ensemble of seven real-time ozone forecasts over eastern North America during the summer of 2004" 110 : 2005
18 Pagowski, M., "Application of dynamic linear regression to improve the skill of ensemble-based deterministic ozone forecasts" 40 : 3240-3250, 2006
19 Monache, L.D., "An ensemble air-quality forecast over western Europe during an ozone episode" 37 : 3469-3474, 2003
20 Žabkar, R., "A WRF/Chem sensitivity study using ensemble modeling for a high ozone episode in Slovenia and the Northern Adriatic area" 77 : 990-1004, 2013
한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 I. PM 농도 및 화학 성분 특성
한반도 서부유입권역에서 대기 중 에어로졸 성분의 화학적 특성 연구 II. 입자의 산성도 및 산화 특성
학술지 이력
| 연월일 | 이력구분 | 이력상세 | 등재구분 |
|---|---|---|---|
| 2023 | 평가예정 | 계속평가 신청대상 (등재유지) | |
| 2018-01-01 | 평가 | 우수등재학술지 선정 (계속평가) | |
| 2017-04-06 | 학술지명변경 | 외국어명 : Journal of Korean Society for Atmospheric Environmnet -> Journal of Korean Society for Atmospheric Environment | ![]() |
| 2015-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
| 2011-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
| 2009-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
| 2007-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
| 2005-01-01 | 평가 | 등재학술지 유지 (등재유지) | ![]() |
| 2002-07-01 | 평가 | 등재학술지 선정 (등재후보2차) | ![]() |
| 2000-01-01 | 평가 | 등재후보학술지 선정 (신규평가) | ![]() |
학술지 인용정보
| 기준연도 | WOS-KCI 통합IF(2년) | KCIF(2년) | KCIF(3년) |
|---|---|---|---|
| 2016 | 0.51 | 0.51 | 0.54 |
| KCIF(4년) | KCIF(5년) | 중심성지수(3년) | 즉시성지수 |
| 0.51 | 0.54 | 0.754 | 0.3 |