RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰 = A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature

      한글로보기

      https://www.riss.kr/link?id=A107156268

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      레독스흐름전지(redox flow battery, RFB)의 구성 부품 중 전극은 전해액의 확산층 역할을 함과 동시에 전자의 통로 역할을 담당하여 출력에 직접적인 영향을 미치는 주요 부품이다. 본 연구는 Fe<...

      레독스흐름전지(redox flow battery, RFB)의 구성 부품 중 전극은 전해액의 확산층 역할을 함과 동시에 전자의 통로 역할을 담당하여 출력에 직접적인 영향을 미치는 주요 부품이다. 본 연구는 Fe<sup>2+</sup>/Fe<sup>3+</sup>와 V<sup>2+</sup>/V<sup>3+</sup>를 레독스 커플로 사용한 RFB 시스템에 chloric/sulfuric mixed acid 지지 전해액을 사용한 경우 전극 종류 및 활성화 정도에 따른 용량, 쿨롱 효율, 에너지 효율을 비교하여 최적의 전극 및 활성화 정도를 제시하였다. 실험에 사용된 5종의 탄소 전극을 사용한 단일셀 평가에서 모두 이론 용량에 근사한 값을 보여 신뢰성을 확보하였으며, 사용된 전극 중 GFD4EA는 상대적으로 우수한 에너지 효율 및 충방전 용량을 나타내었다. 활성화 온도에 따른 전기화학적 성능 고찰을 위하여 GFD4EA 전극을 공기분위기 하에서 400, 450, 500, 600 및 700 ℃에서 열처리하여 활성화하였다. 질량 변화, 주사전자현미경(SEM) 및 XPS 분석을 통하여 활성화 전 후의 물성 변화를 관찰하였으며, 각각의 온도에서 활성화된 전극을 적용한 RFB 단일셀 평가를 실시하여 전기화학적 성능을 비교하였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidw...

      Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe<sup>2+</sup>/Fe<sup>3+</sup> and V<sup>2+</sup>/V<sup>3+</sup> as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

      더보기

      참고문헌 (Reference)

      1 Á. Cunha, "Vanadium redox flow batteries : A technology review" 39 : 889-918, 2015

      2 C. Flox, "Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries" 109 : 344-351, 2013

      3 A. Parasuraman, "Review of material research and development for vanadium redox flow battery applications" 101 : 27-40, 2013

      4 F. Pan, "Redox species of redox flow batteries : A review" 20 : 20499-20517, 2015

      5 A. Z. Weber, "Redox flow batteries : A review" 41 : 1137-1164, 2011

      6 O. Nibel, "Performance of different carbon electrode materials : Insights into stability and degradation under real vanadium redox flow battery operating conditions" 164 : A1608-A1615, 2017

      7 P. Mazúr, "Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization" 380 : 105-114, 2018

      8 P. C. Ghimire, "Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries" 155 : 176-185, 2019

      9 S. J. Yoon, "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery" 172 : 26-35, 2019

      10 W. Li, "Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery" 49 : 3463-3470, 2011

      1 Á. Cunha, "Vanadium redox flow batteries : A technology review" 39 : 889-918, 2015

      2 C. Flox, "Strategies for enhancing electrochemical activity of carbon-based electrodes for all-vanadium redox flow batteries" 109 : 344-351, 2013

      3 A. Parasuraman, "Review of material research and development for vanadium redox flow battery applications" 101 : 27-40, 2013

      4 F. Pan, "Redox species of redox flow batteries : A review" 20 : 20499-20517, 2015

      5 A. Z. Weber, "Redox flow batteries : A review" 41 : 1137-1164, 2011

      6 O. Nibel, "Performance of different carbon electrode materials : Insights into stability and degradation under real vanadium redox flow battery operating conditions" 164 : A1608-A1615, 2017

      7 P. Mazúr, "Performance evaluation of thermally treated graphite felt electrodes for vanadium redox flow battery and their four-point single cell characterization" 380 : 105-114, 2018

      8 P. C. Ghimire, "Optimization of thermal oxidation of electrodes for the performance enhancement in all-vanadium redox flow betteries" 155 : 176-185, 2019

      9 S. J. Yoon, "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery" 172 : 26-35, 2019

      10 W. Li, "Multi-walled carbon nanotubes used as an electrode reaction catalyst for VO2+/VO2+ for a vanadium redox flow battery" 49 : 3463-3470, 2011

      11 B. Sun, "Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment" 37 : 1253-1260, 1992

      12 R. -H. Huang, "Investigation of active electrodes modified with platinum/multiwalled carbon nanotube for vanadium redox flow battery" 159 : A1579-A1586, 2012

      13 W. Wang, "Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery" 52 : 6755-6762, 2007

      14 L. Yue, "Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery" 48 : 3079-3090, 2010

      15 A. M. Pezeshki, "High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation" 294 : 333-338, 2015

      16 Y. -C. Chang, "High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application" 364 : 1-8, 2017

      17 B. Li, "Fe/V redox flow battery electrolyte investigation and optimization" 229 : 1-5, 2013

      18 Q. Wang, "Experimental study on the performance of a vanadium redox flow battery with non-uniformly compressed carbon felt electrode" 213 : 293-305, 2018

      19 Z. He, "Electrospun nitrogen-doped carbon nanofiber as negative electrode for vanadium redox flow battery" 469 : 423-430, 2019

      20 I. Derr, "Electroless chemical aging of carbon felt electrodes for the all-vanadium redox flow battery(VRFB)investigated by electrochemical impedance and X-ray photoelectron spectroscopy" 246 : 783-793, 2017

      21 W. Zhang, "Electrochemical activation of graphite felt electrode for VO2+/VO2+redox couple application" 89 : 429-435, 2013

      22 D. Dixon, "Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application" 332 : 240-248, 2016

      23 P. Mazúr, "Effect of graphite felt properties on the long-term durability of negative electrode in vanadium redox flow battery" 414 : 354-365, 2019

      24 R. Banerjee, "Characterization of carbon felt electrodes for vanadium redox flow batteries-A pore network modeling approach" 21 : 163-171, 2019

      25 Y. Men, "Carbon felts electrode treated in different weak acid solutions through electrochemical oxidation method for all vanadium redox flow battery" 7 : 3482-3488, 2012

      26 G. Wei, "Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application" 220 : 185-192, 2012

      27 H. Liu, "An electrochemically activated graphite electrode with excellent kinetics for electrode processes of V(II)/V(III)and V(IV)/V(V)couples in a vanadium redox flow battery" 4 : 55666-55670, 2014

      28 W. Wang, "A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte" 4 : 4068-4073, 2011

      29 W. Wang, "A new Fe/V redox flow battery using a sulfuric/chloric mixed-acid supporting electrolyte" 2 : 487-493, 2012

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2013-12-01 평가 SCOPUS 등재 (등재유지) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-02-19 학술지명변경 외국어명 : Journal of the Korean Industrial and Engineering Chemistry -> Applied Chemistry for Engineering KCI등재
      2009-04-28 학술지명변경 외국어명 : Jpurnal of the Korean Industrial and Engineering Chemistry -> Journal of the Korean Industrial and Engineering Chemistry KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.32 0.32 0.34
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.33 0.33 0.45 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼