RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      주파수 영역에서의 Gaussian Mixture Model 기반의 동시통화 검출 연구 = Frequency Domain Double-Talk Detector Based on Gaussian Mixture Model

      한글로보기

      https://www.riss.kr/link?id=A101069716

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.
      번역하기

      In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in...

      In this paper, we propose a novel method for the cross-correlation based double-talk detection (DTD), which employing the Gaussian Mixture Model (GMM) in the frequency domain. The proposed algorithm transforms the cross correlation coefficient used in the time domain into 16 channels in the frequency domain using the discrete fourier transform (DFT). The channels are then selected into seven feature vectors for GMM and we identify three different regions such as far-end, double-talk and near-end speech using the likelihood comparison based on those feature vectors. The presented DTD algorithm detects efficiently the double-talk regions without Voice Activity Detector which has been used in conventional cross correlation based double-talk detection. The performance of the proposed algorithm is evaluated under various conditions and yields better results compared with the conventional schemes. especially, show the robustness against detection errors resulting from the background noises or echo path change which one of the key issues in practical DTD.

      더보기

      국문 초록 (Abstract)

      본 논문에서는 주파수 영역에서의 가우시안 혼합 모델 (Gaussian Mixture Model, GMM) 기반의 새로운 동시통화 검출 (Double-talk Detection, DTD) 알고리즘을 제안한다. 구체적으로 주파수 영역에서의 음향학적 반향억제 (Acoustic Echo Suppression, AES)를 위한 동시 통화 검출 알고리즘을 구성하기 위해 기존의 시간 영역에서의 동시통화 검출에 사용되는 상호 상관계수를 이산 푸리에 변환을 통해 16개 채널의 주파수 영역으로 변환하였다. 이러한 주파수 영역에서의 상호 상관계수를 GMM의 보다 효과적인 구성을 위해 통계적 분류 특성에 근거하여 우수한 7개를 선별하였다. 본 논문은 이러한 특징 벡터로 패턴인식에서 우수한 성능을 보이는 GMM을 구성하였으며 원단화자만 있는 구간, 동시통화 구간, 근단 화자만 있는 구간을 우도 (Likelihood) 비교에 따라 분류함으로써 별도의 원단 화자 신호에 대한 음성 검출기 (Voice Activity Detector, VAD)의 사용 없이 잡음환경과 반향 경로 변화에서 강인한 동시통화 검출 알고리즘을 제안한다. 다양한 실험 결과 제안된 방법은 기존의 상호 상관계수를 고정된 문턱 값과 가부 비교하여 동시 통화 구간을 검출하는 hard decision 방법에 비해 검출 오류 확률 (Detection Error Probability)을 비교한 결과 우수한 성능을 보였다.
      번역하기

      본 논문에서는 주파수 영역에서의 가우시안 혼합 모델 (Gaussian Mixture Model, GMM) 기반의 새로운 동시통화 검출 (Double-talk Detection, DTD) 알고리즘을 제안한다. 구체적으로 주파수 영역에서의 음향...

      본 논문에서는 주파수 영역에서의 가우시안 혼합 모델 (Gaussian Mixture Model, GMM) 기반의 새로운 동시통화 검출 (Double-talk Detection, DTD) 알고리즘을 제안한다. 구체적으로 주파수 영역에서의 음향학적 반향억제 (Acoustic Echo Suppression, AES)를 위한 동시 통화 검출 알고리즘을 구성하기 위해 기존의 시간 영역에서의 동시통화 검출에 사용되는 상호 상관계수를 이산 푸리에 변환을 통해 16개 채널의 주파수 영역으로 변환하였다. 이러한 주파수 영역에서의 상호 상관계수를 GMM의 보다 효과적인 구성을 위해 통계적 분류 특성에 근거하여 우수한 7개를 선별하였다. 본 논문은 이러한 특징 벡터로 패턴인식에서 우수한 성능을 보이는 GMM을 구성하였으며 원단화자만 있는 구간, 동시통화 구간, 근단 화자만 있는 구간을 우도 (Likelihood) 비교에 따라 분류함으로써 별도의 원단 화자 신호에 대한 음성 검출기 (Voice Activity Detector, VAD)의 사용 없이 잡음환경과 반향 경로 변화에서 강인한 동시통화 검출 알고리즘을 제안한다. 다양한 실험 결과 제안된 방법은 기존의 상호 상관계수를 고정된 문턱 값과 가부 비교하여 동시 통화 구간을 검출하는 hard decision 방법에 비해 검출 오류 확률 (Detection Error Probability)을 비교한 결과 우수한 성능을 보였다.

      더보기

      참고문헌 (Reference)

      1 "TIA/EIA/IS-127, Enhanced variable rate codec, speech service option 3 for wideband spectrum digital system"

      2 N. S. Kim, "Spectral enhancement based on global soft decision" 7 (7): 108-110, 2000

      3 D. A. Reynolds, "Speaker verification using adapted gaussian mixture models" 10 (10): 19-41, 2000

      4 D. A. Reynolds, "Robust text-independent speaker identification using gaussian mixture speaker models" 3 (3): 72-83, 1995

      5 S. J. Park, "Integrated echo and noise canceler for hands-free applications" 49 (49): 186-195, 2002

      6 N. Furuya, "High performance custom VLSI echo canceller" 1470-1476, 1985

      7 K. Ochiai, "Echo canceller with two echo path models" 25 (25): 589-595, 1977

      8 G. Xuan, "EM algorithm of gaussian mixture model and hidden Markov model" 145-148, 2001

      9 J. H. Song, "Analysis and improvement of Speech/Music classification for 3GPP2 SMV based on GMM" 15 : 103-106, 2008

      10 P. S. R. Diniz, "Adaptive Filtering: Algorithm and practical implementation" Kluwer 1997

      1 "TIA/EIA/IS-127, Enhanced variable rate codec, speech service option 3 for wideband spectrum digital system"

      2 N. S. Kim, "Spectral enhancement based on global soft decision" 7 (7): 108-110, 2000

      3 D. A. Reynolds, "Speaker verification using adapted gaussian mixture models" 10 (10): 19-41, 2000

      4 D. A. Reynolds, "Robust text-independent speaker identification using gaussian mixture speaker models" 3 (3): 72-83, 1995

      5 S. J. Park, "Integrated echo and noise canceler for hands-free applications" 49 (49): 186-195, 2002

      6 N. Furuya, "High performance custom VLSI echo canceller" 1470-1476, 1985

      7 K. Ochiai, "Echo canceller with two echo path models" 25 (25): 589-595, 1977

      8 G. Xuan, "EM algorithm of gaussian mixture model and hidden Markov model" 145-148, 2001

      9 J. H. Song, "Analysis and improvement of Speech/Music classification for 3GPP2 SMV based on GMM" 15 : 103-106, 2008

      10 P. S. R. Diniz, "Adaptive Filtering: Algorithm and practical implementation" Kluwer 1997

      11 C. Avendano, "Acoustic echo suppression in the STFT domain" 175-178, 2001

      12 S. McGovern, "A model for room acoustics"

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2004-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2001-07-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.23 0.23 0.22
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.2 0.18 0.398 0.07
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼