RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      커먼레일 디젤인젝터의 분사성능 개선을 위한 내부유로형상 최적화에 관한 수치적 연구

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.
      번역하기

      The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail ...

      The common-rail injectors are the most critical component of the CRDI diesel engines that dominantly affect engine performances through high pressure injection with exact control. Thus, from now on the advanced combustion technologies for common-rail diesel injection engine require high performance fuel injectors. Accordingly, the previous studies on the numerical and experimental analysis of the diesel injector have focused on a optimum geometry to induce proper injection rate. In this study, computational predictions of performance of the diesel injector have been performed to evaluate internal flow characteristics for various needle lift and the spray pattern at the nozzle exit. To our knowledge, three-dimensional computational fluid dynamics (CFD) model of the internal flow passage of an entire injector duct including injection and return routes has never been studied. In this study, major design parameters concerning internal routes in the injector are optimized by using a CFD analysis and Response Surface Method (RSM). The computational prediction of the internal flow characteristics of the common-rail diesel injector was carried out by using STAR-CCM+7.06 code. In this work, computations were carried out under the assumption that the internal flow passage is a steady-state condition at the maximum needle lift. The design parameters are optimized by using the L16 orthogonal array and polynomial regression, local-approximation characteristics of RSM. Meanwhile, the optimum values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance (ANOVA). In addition, optimal design and prototype design were confirmed by calculating the injection quantities, resulting in the improvement of the injection performance by more than 54%.

      더보기

      참고문헌 (Reference)

      1 전문수, "고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향" 한국액체미립화학회 17 (17): 210-215, 2012

      2 T. Varady, "Reverse Engineering of Geometric Models: An Introduction" 29 (29): 255-268, 1997

      3 R. Myers, "Response Surface Methodology: 1966-1988" 31 (31): 137-157, 1989

      4 H. M. Raymond, "Response Surface Methodology Process and Product and Optimization Using Design Experiments" John Wiley & Sons 1995

      5 V. C. Sarre, "Modeling the Effects of Injector Nozzle Geometry on Diesel Spray" SAE 1999

      6 M. C. Lai, "Implications of 3-D Internal Flow Simulation on the Design of Inward-opening Pressure-swirl Injectors" SAE 2002

      7 L. M. Rodriguez-Anton, "High Pressure Physical Properties of Fluids used in Diesel Injection Systems" SAE 2000

      8 이진욱, "Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구" 한국자동차공학회 18 (18): 108-114, 2010

      9 S. Sibendu, "Effect of Nozzle Orifice Geometry on Spray, Combustion, and Emission Characteristics under Diesel Engine Conditions" 90 (90): 1267-1276, 2011

      10 C. Soteriou, "Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization" SAE 1995

      1 전문수, "고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향" 한국액체미립화학회 17 (17): 210-215, 2012

      2 T. Varady, "Reverse Engineering of Geometric Models: An Introduction" 29 (29): 255-268, 1997

      3 R. Myers, "Response Surface Methodology: 1966-1988" 31 (31): 137-157, 1989

      4 H. M. Raymond, "Response Surface Methodology Process and Product and Optimization Using Design Experiments" John Wiley & Sons 1995

      5 V. C. Sarre, "Modeling the Effects of Injector Nozzle Geometry on Diesel Spray" SAE 1999

      6 M. C. Lai, "Implications of 3-D Internal Flow Simulation on the Design of Inward-opening Pressure-swirl Injectors" SAE 2002

      7 L. M. Rodriguez-Anton, "High Pressure Physical Properties of Fluids used in Diesel Injection Systems" SAE 2000

      8 이진욱, "Eulerian-Lagrangian 다상 유동해석법에 의한 피에조인젝터의 니들-노즐유동 상관성 연구" 한국자동차공학회 18 (18): 108-114, 2010

      9 S. Sibendu, "Effect of Nozzle Orifice Geometry on Spray, Combustion, and Emission Characteristics under Diesel Engine Conditions" 90 (90): 1267-1276, 2011

      10 C. Soteriou, "Direct Injection Diesel Sprays and the Effect of Cavitation and Hydraulic Flip on Atomization" SAE 1995

      11 C. Arcoumanis, "Analysis of the Flow in the Nozzle of a Vertical Multi-hole Diesel Engine Injector" SAE 1998

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2018-11-01 평가 SCOPUS 등재 (기타) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.38 0.38 0.38
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.37 0.36 0.793 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼