RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도 = Response Variability of Laminated Composite Plates with Random Elastic Modulus

      한글로보기

      https://www.riss.kr/link?id=A101122118

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.
      번역하기

      In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept...

      In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.

      더보기

      참고문헌 (Reference)

      1 최창근, "불확실성을 가지는 재료상수간의 상관관계를 고려한 평판구조의 추계론적 유한요소해석 정식화" 8 (8): 127-136, 1995

      2 최창근, "가중적분법을 이용한 반무한영역의 추계론적 유한요소해석" 12 (12): 129-140, 1999

      3 Deodatis,G., "Weighted integral method Ⅰ: Stochastic stiffness matrix" ASCE 117 (117): 1851-1864, 1991

      4 Graham, L., "Variability response functions for stochastic plate bending problems" 20 : 167-188, 1998

      5 Antonio C.C., "Uncertainty analysis based on sensitivity applied to angle-ply composite structures" 92 (92): 1353-1362, 2007

      6 Vinckenroy G., "The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components" 32 : 247-253, 1995

      7 Yamazaki, F., "Simulation of stochastic fields by statistical preconditioning, Journal of Engineering Mechanics" 116 (116): 268-287, 1990

      8 Onkar, A.K., "Probabilistic failure of laminated composite plates using the stochastic finite element method" 77 : 79-91, 2007

      9 Lal A., "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties" 27 (27): 199-222, 2007

      10 Noh, H.C., "Monte Carlo simulation- compatible stochastic field for application to expansion-based stochastic finite element method" 84 (84): 2363-2372, 2006

      1 최창근, "불확실성을 가지는 재료상수간의 상관관계를 고려한 평판구조의 추계론적 유한요소해석 정식화" 8 (8): 127-136, 1995

      2 최창근, "가중적분법을 이용한 반무한영역의 추계론적 유한요소해석" 12 (12): 129-140, 1999

      3 Deodatis,G., "Weighted integral method Ⅰ: Stochastic stiffness matrix" ASCE 117 (117): 1851-1864, 1991

      4 Graham, L., "Variability response functions for stochastic plate bending problems" 20 : 167-188, 1998

      5 Antonio C.C., "Uncertainty analysis based on sensitivity applied to angle-ply composite structures" 92 (92): 1353-1362, 2007

      6 Vinckenroy G., "The use of Monte Carlo techniques in statistical finite element methods for the determination of the structural behavior of composite materials structural components" 32 : 247-253, 1995

      7 Yamazaki, F., "Simulation of stochastic fields by statistical preconditioning, Journal of Engineering Mechanics" 116 (116): 268-287, 1990

      8 Onkar, A.K., "Probabilistic failure of laminated composite plates using the stochastic finite element method" 77 : 79-91, 2007

      9 Lal A., "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties" 27 (27): 199-222, 2007

      10 Noh, H.C., "Monte Carlo simulation- compatible stochastic field for application to expansion-based stochastic finite element method" 84 (84): 2363-2372, 2006

      11 Reddy, J.N., "Mechanics of Laminated Composite Plates" Theory and Analysis 1997

      12 Singh, B.N., "Free vibration of composite cylindrical panels with random material properties" 58 : 435-442, 2002

      13 Papadopoulos, V., "Flexibility-based upper bounds on the response variability of simple beams" 194 (194): 1385-1404, 2005

      14 Noh, H.C., "Effect of Multiple Uncertain Material Properties on Statistical Behavior of In- plane and Plate Structures" 195 (195): 2697-2718, 2006

      15 Schuëuller, G.I., "Computational Stochastic Mechanics-Recent Advances" 79 : 2225-2234, 2001

      16 Lawrence, M.A., "Basis random variables in finite element analysis" 24 : 1849-1863, 1987

      17 Nigam, N.C., "Applications of random vibrations" New Delhi: Narosa 1994

      18 Ngah, M.F., "Application of the spectral stochastic finite element method for performance prediction of composite structures" 78 : 447-456, 2007

      19 Deodatis, G., "Analysis of two-dimensional stochastic systems by the weighted integral method" Computational Stochastic Mechanics 395-406, 1991

      20 Papadopoulos, V., "Analysis of mean and mean square response of general linear stochastic finite element systems" 195 (195): 5454-5471, 2006

      21 Noh, H.C., "A formulation for stochastic finite element analysis of plate structures with uncertain Poisson’s ratio" 193 (193): 4857-4873, 2004

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2028 평가예정 재인증평가 신청대상 (재인증)
      2022-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 선정 (계속평가) KCI등재
      2015-12-01 평가 등재후보로 하락 (기타) KCI등재후보
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-05-29 학술지명변경 외국어명 : 미등록 -> Journal of the Computational Structural Engineering Institute of Korea KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.23
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.22 0.2 0.443 0.03
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼