RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      다중 레이더 배치를 위한 폐쇄형 표적추적 성능지표 산출

      한글로보기

      https://www.riss.kr/link?id=A107842269

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper suggests the closed-form target tracking performance measure which is necessary for formulating a multi-radar placement problem. It is well-known that there is no analytic solution to the DRE(differential Riccati equation) of a nonlinear target tracking filter, which makes the problem intractable. As a fundamental resolution to this technical issue, the line-of-sight frame equivalents of the given nonlinear filter are exploited. For such case, unlike the existing numerical method, the analytic solutions to the corresponding DREs can be readily derived. This idea was based on the fact that the Fisher information is preserved regardless of the coordinates system in which a tracking filter is designed. The proposed approach allows us to clearly describe the tracking performance measure as a function of the radars’ positions as well as their specification. Simulations confirm that our scheme is beneficial for reducing the inherent complexity of a multi-radar placement problem.
      번역하기

      This paper suggests the closed-form target tracking performance measure which is necessary for formulating a multi-radar placement problem. It is well-known that there is no analytic solution to the DRE(differential Riccati equation) of a nonlinear ta...

      This paper suggests the closed-form target tracking performance measure which is necessary for formulating a multi-radar placement problem. It is well-known that there is no analytic solution to the DRE(differential Riccati equation) of a nonlinear target tracking filter, which makes the problem intractable. As a fundamental resolution to this technical issue, the line-of-sight frame equivalents of the given nonlinear filter are exploited. For such case, unlike the existing numerical method, the analytic solutions to the corresponding DREs can be readily derived. This idea was based on the fact that the Fisher information is preserved regardless of the coordinates system in which a tracking filter is designed. The proposed approach allows us to clearly describe the tracking performance measure as a function of the radars’ positions as well as their specification. Simulations confirm that our scheme is beneficial for reducing the inherent complexity of a multi-radar placement problem.

      더보기

      목차 (Table of Contents)

      • Abstract
      • 1. 서론
      • 2. 배치 최적화를 위한 성능지표 산출 문제
      • 3. 좌표변환을 활용한 표적정보량의 닫힌 해 산출
      • 4. 모의실험 및 결과분석
      • Abstract
      • 1. 서론
      • 2. 배치 최적화를 위한 성능지표 산출 문제
      • 3. 좌표변환을 활용한 표적정보량의 닫힌 해 산출
      • 4. 모의실험 및 결과분석
      • 4. 결론
      • References
      더보기

      참고문헌 (Reference)

      1 나원상, "Time-Varying Line-of-Sight Rate Estimator with a Single Modified Tracking Index for RF Homing Guidance" 제어·로봇·시스템학회 9 (9): 857-866, 2011

      2 R. Rajagopalan, "Sensor placement algorithms for target localization in sensor networks" 1-6, 2008

      3 A. Farina, "Radar data processing, vol. 3" Research Studies Press 1985

      4 Bishop, A.N., "Optimality analysis of sensor- target localization geometries" 46 (46): 479-492, 2010

      5 S. C. Herath, "Optimal sensor placement in range based localization for linear arrays" 2225-2230, 2012

      6 J. S. Abel, "Optimal sensor placement for passive source localization" 2927-2930, 1990

      7 S. Martínez, "Optimal sensor placement and motion coordination for target tracking" 42 (42): 661-668, 2006

      8 C. Yang, "Optimal placement of heterogeneous sensors for targets with Gaussian priors" 49 (49): 1637-1653, 2013

      9 F.L. Lewis, "Optimal control" John Wiley & Sons 2012

      10 S.S. Blackman, "Multiple-target tracking with radar applications" 1986

      1 나원상, "Time-Varying Line-of-Sight Rate Estimator with a Single Modified Tracking Index for RF Homing Guidance" 제어·로봇·시스템학회 9 (9): 857-866, 2011

      2 R. Rajagopalan, "Sensor placement algorithms for target localization in sensor networks" 1-6, 2008

      3 A. Farina, "Radar data processing, vol. 3" Research Studies Press 1985

      4 Bishop, A.N., "Optimality analysis of sensor- target localization geometries" 46 (46): 479-492, 2010

      5 S. C. Herath, "Optimal sensor placement in range based localization for linear arrays" 2225-2230, 2012

      6 J. S. Abel, "Optimal sensor placement for passive source localization" 2927-2930, 1990

      7 S. Martínez, "Optimal sensor placement and motion coordination for target tracking" 42 (42): 661-668, 2006

      8 C. Yang, "Optimal placement of heterogeneous sensors for targets with Gaussian priors" 49 (49): 1637-1653, 2013

      9 F.L. Lewis, "Optimal control" John Wiley & Sons 2012

      10 S.S. Blackman, "Multiple-target tracking with radar applications" 1986

      11 S. Blackman, "Design and analysis of modern tracking systems" Artech House 1999

      12 H. F. Durrant-Whyte, "Consistent integration and propagation of disparate sensor observations" 6 (6): 3-24, 1987

      13 Y. Y. Li, "Closedform formula of Cramer–Rao lower bound for 3D TOA target localisation" 56 (56): 43-45, 2020

      14 K. Yoo, "Analysis of Optimal Range Sensor Placement for Tracking a Moving Target" 24 (24): 1700-1704, 2020

      15 A.N. Bishop, "An optimality analysis of sensor-target geometries for signal strength based localization" 127-132, 2009

      16 S. H. Kim, "A note on sensor arrangement for long-distance target localization" 133 : 18-31, 2017

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 학술지 통합 (기타) KCI등재
      2001-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.27 0.27 0.24
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.21 0.19 0.366 0.08
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼