1 최형준, "축구의 경기 결과 예측을 위한 머신러닝 기법 비교" 한국체육측정평가학회 24 (24): 81-91, 2022
2 최형준 ; 이윤수, "축구 월드컵대회의 경기기록 기반 경기결과 예측" 한국체육과학회 28 (28): 1317-1325, 2019
3 이재현 ; 이수원, "앙상블 기법을 통한 잉글리시 프리미어리그 경기결과 예측" 한국정보처리학회 9 (9): 161-168, 2020
4 김필수 ; 이상현, "빅데이터 분석을 적용한 한국프로농구 리그 정규시즌 경기결과의 머신러닝 분류모형 예측성능 비교에 관한 연구" 한국체육학회 62 (62): 263-277, 2023
5 김필수 ; 이상현 ; 전성삼, "머신러닝을 적용한 경륜 경기 순위 예측 및 평가에 관한 연구: 2016~2022년 출주표 정보 및 경주 결과 활용" 한국스포츠산업경영학회 28 (28): 76-94, 2023
6 김필수 ; 전성삼 ; 이상현, "머신러닝 적용 경륜 경주 순위 및 베팅방식별 결과 예측에 관한 연구" 한국서비스경영학회 24 (24): 157-192, 2023
7 서영진 ; 문형우 ; 우용태, "기계학습 기법을 이용한 한국프로야구 승패 예측 모델" 한국컴퓨터정보학회 24 (24): 17-24, 2019
8 Umami, I., "implementing the Expected Goal (xG)model to predict scores in soccer matches" 4 (4): 38-54, 2021
9 Noble, W. S., "What is a support vector machine?" 24 (24): 1565-1567, 2006
10 Altmann, S., "Validity and reliability of speed tests used in soccer: A systematic review" 14 (14): e0220982-, 2019
11 Huang, M. L., "Use of machine learning and deep learning to predict the outcomes of major league baseball matches" 11 (11): 4499-, 2021
12 Srivastava, A., "Usage of Analytics in the World of Sports" IEEE 1-7, 2021
13 Horvat, T., "The use of machine learning in sport outcome prediction: A review" 10 (10): e1380-, 2020
14 Baumer, B., "The sabermetric revolution: Assessing the growth of analytics in baseball" University of Pennsylvania Press 2014
15 Patel, D., "The intertwine of brain and body : a quantitative analysis on how big data influences the system of sports" 7 : 1-16, 2020
16 Horvat, T., "The impact of selecting a validation method in machine learning on predicting basketball game outcomes" 12 (12): 431-, 2020
17 Bunker, R., "The application of machine learning techniques for predicting match results in team sport : A review" 73 : 1285-1322, 2022
18 Tippett, J, "The Expected Goals Philosophy:A Game-Changing Way of Analysing Football" Wydawca nieznany 2019
19 Jayal, A., "Sports analytics: Analysis, visualisation and decision making in sports performance" Routledge 2018
20 Sarlis, V., "Sports analytics-Evaluation of basketball players and team performance" 93 : 101562-, 2020
21 Ghosh, I., "Sports analytics review:Artificial intelligence applications, emerging technologies, and algorithmic perspective" e1496-, 2023
22 Morgulev, E., "Sports analytics and the big-data era" 5 : 213-222, 2018
23 Miller, T. W, "Sports analytics and data science: winning the game with methods and models" FT press 2015
24 Alamar, B, "Sports Analytics: A Guide for Coaches, Managers, and Other Decision Makers" Columbia University Press 2013
25 Apostolou, K., "Sports Analytics algorithms for performance prediction" IEEE 1-4, 2019
26 Fried, G., "Sport analytics:A data-driven approach to sport business and management" Taylor & Francis 2016
27 Singh, N., "Sport analytics: A review" 9 : 11-, 2020
28 Samuel, A. L., "Some studies in machine learning using the game of checkers II-Recent progress" 11 (11): 601-617, 1967
29 Belgiu, M., "Random forest in remote sensing : A review of applications and future directions" 114 : 24-31, 2016
30 Rigatti, S. J., "Random forest" 47 (47): 31-39, 2017
31 Troilo, M., "Professional Sports Organizations and Business Analytics: Monopoly Power vs Debt Financing" 14 (14): 15-21, 2022
32 Ioffe, S., "Probabilistic linear discriminant analysis" Springer Berlin Heidelberg 531-542, 2006
33 Baboota, R., "Predictive analysis and modelling football results using machine learning approach for English Premier League" 35 (35): 741-755, 2019
34 Zimmermann, A., "Predicting college basketball match outcomes using machine learning techniques: some results and lessons learned"
35 Cervone, D., "Pointwise: Predicting points and valuing decisions in real time with nba optical tracking data" 28 : 3-, 2014
36 Chen, J. C., "Off to the races: A comparison of machine learning and alternative data for predicting economic indicators" 2019
37 Thabtah, F., "NBA game result prediction using feature analysis and machine learning" 6 (6): 103-116, 2019
38 Riedmiller, M., "Multi layer perceptron" Machine Learning Lab Special Lecture, University of Freiburg 7-24, 2014
39 Lewis, M, "Moneyball: The art of winning an unfair game" WW Norton & Company 2004
40 Wolfe, R., "Moneyball : A business perspective" 2 (2): 249-262, 2007
41 Borowski, P., "Machine learning in the prediction of flat horse racing results in Poland" University of Warsaw, Faculty of Economic Sciences 2021
42 Jain, S., "Machine learning approaches to predict basketball game outcome" IEEE 1-7, 2017
43 Koseler, K., "Machine learning applications in baseball: A systematic literature review" 31 (31): 745-763, 2017
44 Miguel, M., "Load measures in training/match monitoring in soccer: A systematic review" 18 (18): 2721-, 2021
45 Tharwat, A., "Linear vs. quadratic discriminant analysis classifier: A tutorial" 3 (3): 145-180, 2016
46 Xanthopoulos, P., "Linear discriminant analysis" 27-33, 2013
47 Ke, G., "Lightgbm: A highly efficient gradient boosting decision tree" 30 : 1-9, 2017
48 Jamil, M., "Investigating inter-league and inter-nation variations of key determinants for penalty success across European football" 20 (20): 892-907, 2020
49 Natekin, A., "Gradient boosting machines, a tutorial" 7 : 21-, 2013
50 Puerzer, R. J., "From scientific baseball to sabermetrics : Professional baseball as a reflection of engineering and management in society" 11 (11): 34-48, 2002
51 Satheeshkumar, P. S., "Feature selection and predicting chemotherapy-induced ulcerative mucositis using machine learning methods" 154 : 104563-, 2021
52 Schapire, R. E., "Explaining adaboost, Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik"
53 Celik, O., "Examination of feature selection methods and an application" 9 (9): 33-40, 2020
54 Goodfellow, I., "Deep learning" MIT press 2016
55 Dindorf, C., "Conceptual structure and current trends in Artificial Intelligence, Machine Learning, and Deep Learning research in sports : A bibliometric review" 20 (20): 173-, 2022
56 Kruse, R., "Computational Intelligence:A Methodological Introduction" Springer International Publishing 53-124, 2022
57 Davenport, T. H., "Competing on analytics" 84 (84): 98-, 2006
58 Al Daoud, E., "Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset" 13 (13): 6-10, 2019
59 Wang, K. C, "Classifying NBA offensive plays using neural networks" 4 : 2016
60 Baumer, B. S., "Big ideas in sports analytics and statistical tools for their investigation" e1612-, 2023
61 Manyika, J., "Big data: The next frontier for innovation, competition, and productivity" McKinsey Global Institute 2011
62 Lyle, A., "Baseball prediction using ensemble learning" University of Georgia 2007
63 Araújo, D., "Artificial intelligence in sport performance analysis" Routledge 2021
64 Hosmer Jr, D. W., "Applied logistic regression Vol. 398" John Wiley & Sons 2013
65 Pai, P. F., "Analyzing basketball games by a support vector machines with decision tree model" 28 : 4159-4167, 2017
66 Rathke, A., "An examination of expected goals and shot efficiency in soccer" 12 (12): 514-529, 2017
67 Goldman, M, "Allocative and dynamic efficiency in NBA decision making" 4-5, 2011
68 Ying, C., "Advance and prospects of AdaBoost algorithm" 39 (39): 745-758, 2013
69 Bhatnagar, R., "A systematic review of sports analytics" 19 (19): 393-406, 2022
70 Chung, W. C., "A svm-based committee machine for prediction of hong kong horse racing" IEEE 1-4, 2017
71 Passfield, L., "A mine of information : can sports analytics provide wisdom from your data?" 12 (12): 851-855, 2017
72 Jiang, B., "A direct approach for sparse quadratic discriminant analysis" 19 (19): 1098-1134, 2018
73 Bentéjac, C., "A comparative analysis of gradient boosting algorithms" 54 : 1937-1967, 2021
74 예원진 ; 이성노, "2022 FIBA 남자농구 아시안컵 경기결과를 활용한 머신러닝 분류 모형의 예측 성능 비교" 한국체육측정평가학회 24 (24): 53-69, 2022