1 김승일 ; 노유정 ; 강영진 ; 박선화 ; 안병하, "진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델" 한국전산구조공학회 34 (34): 25-33, 2021
2 이명준 ; 전준영 ; 강토 ; 한순우 ; 박규해, "압축센싱과 통계학적 기법을 적용한 회전체 시스템의 상태진단" 한국소음진동공학회 26 (26): 651-659, 2016
3 김지만 ; 정병규 ; 허소정 ; 안세진 ; 정의봉, "드럼세탁기 방사소음의 소스 및 기여도 분석" 한국소음진동공학회 24 (24): 628-635, 2014
4 R. X. Gao, "Wavelets" Springer 2011
5 S. Arfaoui, "Wavelet Analysis : Basic concepts and applications" CRC Press 2021
6 R. Stamminger, "Towards a durability test for washing-machines" 131 : 206-215, 2018
7 T. G. Dietterich, "The handbook of brain theory and neural networks" 2 (2): 110-125, 2002
8 F. Y. Osisanwo, "Supervised machine learning algorithms : classification and comparison" 48 (48): 128-138, 2017
9 C. T. Yiakopoulos, "Rolling element bearing fault detection in industrial environments based on a K-means clustering approach" 38 (38): 2888-2911, 2011
10 P. Henriquez, "Review of Automatic Fault Diagnosis Systems Using Audio and Vibration Signals" 44 (44): 642-652, 2014
1 김승일 ; 노유정 ; 강영진 ; 박선화 ; 안병하, "진동 데이터의 시간영역 특징 추출에 기반한 고장 분류 모델" 한국전산구조공학회 34 (34): 25-33, 2021
2 이명준 ; 전준영 ; 강토 ; 한순우 ; 박규해, "압축센싱과 통계학적 기법을 적용한 회전체 시스템의 상태진단" 한국소음진동공학회 26 (26): 651-659, 2016
3 김지만 ; 정병규 ; 허소정 ; 안세진 ; 정의봉, "드럼세탁기 방사소음의 소스 및 기여도 분석" 한국소음진동공학회 24 (24): 628-635, 2014
4 R. X. Gao, "Wavelets" Springer 2011
5 S. Arfaoui, "Wavelet Analysis : Basic concepts and applications" CRC Press 2021
6 R. Stamminger, "Towards a durability test for washing-machines" 131 : 206-215, 2018
7 T. G. Dietterich, "The handbook of brain theory and neural networks" 2 (2): 110-125, 2002
8 F. Y. Osisanwo, "Supervised machine learning algorithms : classification and comparison" 48 (48): 128-138, 2017
9 C. T. Yiakopoulos, "Rolling element bearing fault detection in industrial environments based on a K-means clustering approach" 38 (38): 2888-2911, 2011
10 P. Henriquez, "Review of Automatic Fault Diagnosis Systems Using Audio and Vibration Signals" 44 (44): 642-652, 2014
11 R. X. Gao, "Non-stationary signal processing for bearing health monitoring" 1 (1): 18-40, 2006
12 R. Yan, "Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis" 42 (42): 293-302, 2009
13 A. Malekloo, "Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights" 21 (21): 1906-1955, 2022
14 S. Goumas, "Intelligent on-line quality control of washing machines using discrete wavelet analysis features and likelihood classification" 14 (14): 655-666, 2001
15 A. Singh, "Gearbox fault diagnosis under non-stationary conditions with independent angular re-sampling technique applied to vibration and sound emission signals" 144 : 11-22, 2019
16 J. Tang, "Feature selection for classification : A review" 2014
17 S. Lu, "Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals" 385 : 16-32, 2016
18 R. Polikar, "Ensemble machine learning:Methods and applications" Springer 1-34, 2012
19 S. Bae, "Dynamic analysis of an automatic washing machine with a hydraulic balancer" 257 (257): 3-18, 2002
20 Hee-Tae Lim ; 정의봉 ; Keun-Joo Kim, "Dynamic Modeling and Analysis of Drum-type Washing Machine" 한국정밀공학회 11 (11): 407-417, 2010
21 U. C. Jeong, "Development of a sound quality index for the wash cycle process of front-loading washing machines considering the impacts of individual noise sources" 87 : 183-189, 2015
22 S. K. Goumas, "Classification of washing machines vibration signals using discrete wavelet analysis for feature extraction" 51 (51): 497-508, 2002
23 A. Bommert, "Benchmark for filter methods for feature selection in high-dimensional classification data" 143 : 106839-, 2020
24 Z. K. Peng, "Application of the wavelet transform in machine condition monitoring and fault diagnostics : A review with bibliography" 18 (18): 199-221, 2004
25 A. Singh, "A review of supervised machine learning algorithms" 2016
26 A. Jović, "A review of feature selection methods with applications" 2015
27 A. Mondal, "A novel feature extraction technique for pulmonary sound analysis based on EMD" 159 : 199-209, 2018