RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCIE SCOPUS KCI등재

      Effect of Silicon Infiltration on the Mechanical Properties of 2D Cross-ply Carbon-Carbon Composites

      한글로보기

      https://www.riss.kr/link?id=A106128107

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.
      번역하기

      Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture an...

      Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼