<P>Acute lymphocytic leukemia (ALL) is uncommon lymphoid malignancy in dogs, and its diagnosis is challenging. A 14-year-old spayed female mixed breed dog was transferred to a veterinary medical teaching hospital for an immediate blood transfusi...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107523626
-
2017
-
학술저널
269-274(6쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P>Acute lymphocytic leukemia (ALL) is uncommon lymphoid malignancy in dogs, and its diagnosis is challenging. A 14-year-old spayed female mixed breed dog was transferred to a veterinary medical teaching hospital for an immediate blood transfusi...
<P>Acute lymphocytic leukemia (ALL) is uncommon lymphoid malignancy in dogs, and its diagnosis is challenging. A 14-year-old spayed female mixed breed dog was transferred to a veterinary medical teaching hospital for an immediate blood transfusion. The dog showed lethargy, pale mucous membranes, and a weak femoral pulse. Complete blood count revealed non-regenerative anemia and severe leukopenia with thrombocytopenia. ALL was tentatively diagnosed based on the predominance of immature lymphoblasts on blood film examination. For confirmation of lymphoid malignancy, PCR for antigen receptor rearrangement (PARR) on a peripheral blood sample and flow cytometry analysis were performed after blood transfusion. Flow cytometry analysis revealed that lymphocyte subsets were of normal composition, but PARR detected a T-cell malignancy. The dog was diagnosed with ALL and survived 1 wk after diagnosis. In conclusion, after blood transfusion, flow cytometry was not a reliable diagnostic method for an ALL dog, whereas PARR could detect lymphoid malignancy. Our results suggest that PARR should be the first-line diagnostic tool to detect canine lymphoid malignancy after a blood transfusion.</P>
T Cell's Sense of Self: a Role of Self-Recognition in Shaping Functional Competence of Naïve T Cells
Comparative Analyses of Signature Genes in Acute Rejection and Operational Tolerance