RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS

      도심 환경 속 판단 보조를 위한 교통섬 지형분할 및 객체분류

      한글로보기

      https://www.riss.kr/link?id=A107903748

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In the urban environment, terrains such as a “traffic island” are present for the convenience and safety of pedestrians. However, such terrains cause decision errors in the autonomous system. In the existing autonomous vehicles, a method of stopping or decelerating the vehicle for safety when an object is detected on the driving path or around the vehicle is applied. However, such methods not only make it difficult for the autonomous vehicles to drive smoothly in unusual situations such as a traffic island but also cause traffic jam with the possibility to cause traffic accidents in the urban environment. To mitigate this problem, we segmented the traffic island and roadway through semantic segmentation. Pedestrians on the traffic island are classified as the “safety group,” and the other areas are termed as the “non-safety group,” providing an efficient method for stable autonomous driving decisions in the Pangyo area.
      번역하기

      In the urban environment, terrains such as a “traffic island” are present for the convenience and safety of pedestrians. However, such terrains cause decision errors in the autonomous system. In the existing autonomous vehicles, a method of stoppi...

      In the urban environment, terrains such as a “traffic island” are present for the convenience and safety of pedestrians. However, such terrains cause decision errors in the autonomous system. In the existing autonomous vehicles, a method of stopping or decelerating the vehicle for safety when an object is detected on the driving path or around the vehicle is applied. However, such methods not only make it difficult for the autonomous vehicles to drive smoothly in unusual situations such as a traffic island but also cause traffic jam with the possibility to cause traffic accidents in the urban environment. To mitigate this problem, we segmented the traffic island and roadway through semantic segmentation. Pedestrians on the traffic island are classified as the “safety group,” and the other areas are termed as the “non-safety group,” providing an efficient method for stable autonomous driving decisions in the Pangyo area.

      더보기

      목차 (Table of Contents)

      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 관련 연구
      • Ⅲ. 실험 차량 소개
      • Ⅳ. 안전군과 비안전군 검출 알고리즘
      • Abstract
      • Ⅰ. 서론
      • Ⅱ. 관련 연구
      • Ⅲ. 실험 차량 소개
      • Ⅳ. 안전군과 비안전군 검출 알고리즘
      • Ⅴ. 구현 및 결과
      • Ⅵ. 결론
      • Ⅶ. 향후 과제
      • REFERENCES
      더보기

      참고문헌 (Reference)

      1 이종서, "포인트 클라우드 보간을 이용한 카메라-라이다의 센서 퓨전 기반 객체 검출" 제어·로봇·시스템학회 26 (26): 469-478, 2020

      2 M. Heinz, "The three-dimensional normal-distributions transform" 10 : 3-, 2008

      3 B. Schoettle, "Sensor fusion: A comparison of sensing capabilities of human drivers and highly automated vehicles" University of Michigan 2017

      4 T. D. Stoyanov, "Reliable autonomous navigation in semistructured environments using the three-dimensional normal distributions transform (3d-ndt)" Örebro University 2012

      5 W. Wen, "Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong" 18 (18): 3928-, 2018

      6 P. Soviany, "Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction" IEEE 2018

      7 K. He, "Mask r-cnn" 2017

      8 A. Dhall, "LiDAR-camera calibration using 3D-3D point correspondences"

      9 F. Camara, "Human Factors in Intelligent Vehicles" 2020

      10 A. Paigwar, "Gndnet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles" IEEE 2020

      1 이종서, "포인트 클라우드 보간을 이용한 카메라-라이다의 센서 퓨전 기반 객체 검출" 제어·로봇·시스템학회 26 (26): 469-478, 2020

      2 M. Heinz, "The three-dimensional normal-distributions transform" 10 : 3-, 2008

      3 B. Schoettle, "Sensor fusion: A comparison of sensing capabilities of human drivers and highly automated vehicles" University of Michigan 2017

      4 T. D. Stoyanov, "Reliable autonomous navigation in semistructured environments using the three-dimensional normal distributions transform (3d-ndt)" Örebro University 2012

      5 W. Wen, "Performance analysis of NDT-based graph SLAM for autonomous vehicle in diverse typical driving scenarios of Hong Kong" 18 (18): 3928-, 2018

      6 P. Soviany, "Optimizing the trade-off between single-stage and two-stage deep object detectors using image difficulty prediction" IEEE 2018

      7 K. He, "Mask r-cnn" 2017

      8 A. Dhall, "LiDAR-camera calibration using 3D-3D point correspondences"

      9 F. Camara, "Human Factors in Intelligent Vehicles" 2020

      10 A. Paigwar, "Gndnet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles" IEEE 2020

      11 T. -Y. Lin, "Feature pyramid networks for object detection" 2017

      12 Y. Wu, "Detectron2"

      13 J. Hariyono, "Detection of pedestrian crossing road using action classification model" IEEE 2015

      14 Sukru Yaren Gelbal, "COLLISION AVOIDANCE OF LOW SPEED AUTONOMOUS SHUTTLES WITH PEDESTRIANS" 한국자동차공학회 21 (21): 903-917, 2020

      15 D. F. Llorca, "Autonomous pedestrian collision avoidance using a fuzzy steering controller" 12 (12): 390-401, 2011

      16 S. Kuutti, "A survey of the state-ofthe-art localization techniques and their potentials for autonomous vehicle applications" 5 (5): 829-846, 2018

      17 S. Grigorescu, "A survey of deep learning techniques for autonomous driving" 37 (37): 362-386, 2020

      18 염상식, "2D 시맨틱 분할 프로젝션을 이용한 3D 실내 공간 시맨틱 분할" 제어·로봇·시스템학회 26 (26): 949-954, 2020

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-02 학술지명변경 한글명 : 제어.자동화.시스템공학 논문지 -> 제어.로봇.시스템학회 논문지
      외국어명 : Journal of Control, Automation and Systems Engineering -> Journal of Institute of Control, Robotics and Systems
      KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.69 0.69 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.39 0.509 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼