The impact of land slope to the degree of flow divergence was considered employing distributional applications of slope exponents in the now directlOn algoriUnns. Lmear, exponential and ]X)wer law of distributional functIons were employed to address t...
The impact of land slope to the degree of flow divergence was considered employing distributional applications of slope exponents in the now directlOn algoriUnns. Lmear, exponential and ]X)wer law of distributional functIons were employed to address the variation of slope exponents m a terrain analysis. Dongok subwatershed at Wichun test watershed was selected as a study area. Digital Elevation Models of 20m, 30m, 40m and 50m grid size were made to perfonn the analysis. Various calcualtion methodologies of topographic index and the impact of grid sizes were investigated in terms of statistical and spatial aspects. DIstributional applications of slope e.xponents made it possible to represent the flow divergence and convergence about the ten-ain characteristics. The Monte~Carlo method was used to simulate six runoff events to check the impact of topographic factor in the runoff simulation.