RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      온실 딸기의 재배 베드 단수에 따른 환경인자 분석

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 연구는 딸기 온실 내부의 방대한 환경인자를 활용하여 판별분석을 실시하고 딸기의 재배 베드 단수에 따른 온실 내부의 환경인자를 분석함으로 써, 딸기 분야에서 계측된 데이터의 활용성을 높이기 위한 기초자료로 활용할 목적으로 수행하였다. 그 결과는 다음과 같다. 환경인자별(온도, 습도, 이산화탄소 농도, EC 및 pH) 동질성 검정의 유의확률은 각각 0.0001, 8.2788E-38, 4.3310E-85, 1.3001E-16 및 0.0001로서 설정한 유의수준 0.05보다 낮게 나타났다. 그리고 분석결과 판별함수식은 F(x)1 = –60.5664 -0.1339×Temperature –0.0087×Humidity +0.0018×CO2 +0.1014×EC +8.3860×pH, F(x)2 = –12.4928 +0.1963×Temperature –0.0024×Humidity +0.0254×CO2 –0.0187×EC –0.3651×pH로 도출되었다. 판별함수식의 정확도는 대상 온실 A (81.1%) 및 B (96.1%)보다 대상 온실 C (100.0%)에서 높은 것으로 나타났다. 예측 가능한 대상 온실별(A, B 및 C) 분류함수는 각각 – 1836.7035 – 2.8733×Temperature + 0.1355×Humidity + 0.4186×CO2 + 7.4351×EC + 484.5901×pH, – 1710.8369 – 2.7701×Temperature + 0.1550×Humidity + 0.3937×CO2 + 7.2482×EC + 468.1477×pH, – 2291.7125 - 3.9756×Temperature + 0.0723× Humidity + 0.4177×CO2 + 8.1961×EC + 546.8476×pH로 나타났다. 특히 판별함수식을 근거로 환경인자별 새로운 측정값이나 자료를 입력하였을 때, 특정 그룹으로 분류가 가능함으로써 데이터의 특징을 파악할 수 있다. 이러한 환경인자는 식별을 용이하게 함으로써 환경인자 측정값의 활용도를 높여주는 방법이라고 판단된다.
      번역하기

      본 연구는 딸기 온실 내부의 방대한 환경인자를 활용하여 판별분석을 실시하고 딸기의 재배 베드 단수에 따른 온실 내부의 환경인자를 분석함으로 써, 딸기 분야에서 계측된 데이터의 활용...

      본 연구는 딸기 온실 내부의 방대한 환경인자를 활용하여 판별분석을 실시하고 딸기의 재배 베드 단수에 따른 온실 내부의 환경인자를 분석함으로 써, 딸기 분야에서 계측된 데이터의 활용성을 높이기 위한 기초자료로 활용할 목적으로 수행하였다. 그 결과는 다음과 같다. 환경인자별(온도, 습도, 이산화탄소 농도, EC 및 pH) 동질성 검정의 유의확률은 각각 0.0001, 8.2788E-38, 4.3310E-85, 1.3001E-16 및 0.0001로서 설정한 유의수준 0.05보다 낮게 나타났다. 그리고 분석결과 판별함수식은 F(x)1 = –60.5664 -0.1339×Temperature –0.0087×Humidity +0.0018×CO2 +0.1014×EC +8.3860×pH, F(x)2 = –12.4928 +0.1963×Temperature –0.0024×Humidity +0.0254×CO2 –0.0187×EC –0.3651×pH로 도출되었다. 판별함수식의 정확도는 대상 온실 A (81.1%) 및 B (96.1%)보다 대상 온실 C (100.0%)에서 높은 것으로 나타났다. 예측 가능한 대상 온실별(A, B 및 C) 분류함수는 각각 – 1836.7035 – 2.8733×Temperature + 0.1355×Humidity + 0.4186×CO2 + 7.4351×EC + 484.5901×pH, – 1710.8369 – 2.7701×Temperature + 0.1550×Humidity + 0.3937×CO2 + 7.2482×EC + 468.1477×pH, – 2291.7125 - 3.9756×Temperature + 0.0723× Humidity + 0.4177×CO2 + 8.1961×EC + 546.8476×pH로 나타났다. 특히 판별함수식을 근거로 환경인자별 새로운 측정값이나 자료를 입력하였을 때, 특정 그룹으로 분류가 가능함으로써 데이터의 특징을 파악할 수 있다. 이러한 환경인자는 식별을 용이하게 함으로써 환경인자 측정값의 활용도를 높여주는 방법이라고 판단된다.

      더보기

      다국어 초록 (Multilingual Abstract)

      This study conducted the discriminant analysis using significant environmental factors inside the strawberry greenhouse. The objective of this study was to analyze the environmental factors inside the greenhouse according to the number of beds in strawberry cultivation and to use it as basic data to increase the usability of the measured data in the strawberry field. The results showed that the significance probabilities of the homogeneity test for each environmental factor such as temperature, humidity, carbon dioxide concentration, EC and pH were 0.0001, 8.2788E-38, 4.3310E-85, 1.3001E-16, and 0.0001, respectively, which were lower than the significance level of 0.05. As a result of the analysis, the discriminant function formula was derived as F(x)1 = –60.5664 -0.1339×Temperature –0.0087×Humidity +0.0018×CO2 +0.1014×EC +8.3860×pH and F(x)2 = –12.4928 +0.1963×Temperature –0.0024×Humidity +0.0254×CO2 –0.0187×EC – 0.3651×pH. The accuracy of the discriminant function was higher in target greenhouse C (100.0%) than in target greenhouses A (81.1%)and B (96.1%). The predictable classification functions for each target greenhouse (A, B and C) were – 1836.7035 – 2.8733×Temperature + 0.1355×Humidity + 0.4186×CO2 + 7.4351×EC + 484.5901×pH, – 1710.8369 – 2.7701×Temperature + 0.1550×Humidity + 0.3937×CO2 + 7.2482×EC + 468.1477×pH, – 2291.7125 - 3.9756×Temperature + 0.0723×Humidity + 0.4177×CO2 + 8.1961×EC + 546.8476×pH, respectively. Specifically a new measured value or data for each environmental factor is input based on the discriminant function formula, it is possible to classify the data into a specific group, thereby identifying the characteristics of the data. This study revealed the environmental factors are a method of increasing the utilization of the new environmental factor measurement values by facilitating identification.
      번역하기

      This study conducted the discriminant analysis using significant environmental factors inside the strawberry greenhouse. The objective of this study was to analyze the environmental factors inside the greenhouse according to the number of beds in stra...

      This study conducted the discriminant analysis using significant environmental factors inside the strawberry greenhouse. The objective of this study was to analyze the environmental factors inside the greenhouse according to the number of beds in strawberry cultivation and to use it as basic data to increase the usability of the measured data in the strawberry field. The results showed that the significance probabilities of the homogeneity test for each environmental factor such as temperature, humidity, carbon dioxide concentration, EC and pH were 0.0001, 8.2788E-38, 4.3310E-85, 1.3001E-16, and 0.0001, respectively, which were lower than the significance level of 0.05. As a result of the analysis, the discriminant function formula was derived as F(x)1 = –60.5664 -0.1339×Temperature –0.0087×Humidity +0.0018×CO2 +0.1014×EC +8.3860×pH and F(x)2 = –12.4928 +0.1963×Temperature –0.0024×Humidity +0.0254×CO2 –0.0187×EC – 0.3651×pH. The accuracy of the discriminant function was higher in target greenhouse C (100.0%) than in target greenhouses A (81.1%)and B (96.1%). The predictable classification functions for each target greenhouse (A, B and C) were – 1836.7035 – 2.8733×Temperature + 0.1355×Humidity + 0.4186×CO2 + 7.4351×EC + 484.5901×pH, – 1710.8369 – 2.7701×Temperature + 0.1550×Humidity + 0.3937×CO2 + 7.2482×EC + 468.1477×pH, – 2291.7125 - 3.9756×Temperature + 0.0723×Humidity + 0.4177×CO2 + 8.1961×EC + 546.8476×pH, respectively. Specifically a new measured value or data for each environmental factor is input based on the discriminant function formula, it is possible to classify the data into a specific group, thereby identifying the characteristics of the data. This study revealed the environmental factors are a method of increasing the utilization of the new environmental factor measurement values by facilitating identification.

      더보기

      목차 (Table of Contents)

      • 초록
      • Abstract
      • 서론
      • 재료 및 방법
      • 1. 실험대상 온실 및 작물
      • 초록
      • Abstract
      • 서론
      • 재료 및 방법
      • 1. 실험대상 온실 및 작물
      • 2. 작물 재배
      • 3. 데이터 수집 방법
      • 4. 분석 방법
      • 결과 및 고찰
      • 1. 통계 분석결과
      • References
      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼