RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      A Study on New Performance Index of Granular Models

      한글로보기

      https://www.riss.kr/link?id=A102260845

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose the performance evaluation of granular model instead of the conventional performance index, which is a root mean square error. In contrast to most fuzzy models developed in the previous researches, the outputs obtained by granular models have the form of information granules rather than plain numeric entities. Thus, we use a concept of information granularity as a network of information granules with contexts produced in the output space and a set of information granules formed in the input space. Granular model is constructed by information granules that are extracted by specialized context-based fuzzy clustering. Furthermore, this model is designed by the rules connecting the association of information granules obtained in input-output space. The performance evaluation method of granular model needs new criterion, because the output of granular model has triangular fuzzy number. The performance index is expressed by the product between fuzzy coverage of predicted output and specificity of information granules. Thus, we can quantify the model output representing information granules. Granular models offer a new performance evaluation method of system modeling by designing models at the level of information granules. For this, we deal with a synthesis function approximation and nonlinear regression and demonstrate the effectiveness of the proposed performance evaluation in the design of granular model.
      번역하기

      In this paper, we propose the performance evaluation of granular model instead of the conventional performance index, which is a root mean square error. In contrast to most fuzzy models developed in the previous researches, the outputs obtained by gra...

      In this paper, we propose the performance evaluation of granular model instead of the conventional performance index, which is a root mean square error. In contrast to most fuzzy models developed in the previous researches, the outputs obtained by granular models have the form of information granules rather than plain numeric entities. Thus, we use a concept of information granularity as a network of information granules with contexts produced in the output space and a set of information granules formed in the input space. Granular model is constructed by information granules that are extracted by specialized context-based fuzzy clustering. Furthermore, this model is designed by the rules connecting the association of information granules obtained in input-output space. The performance evaluation method of granular model needs new criterion, because the output of granular model has triangular fuzzy number. The performance index is expressed by the product between fuzzy coverage of predicted output and specificity of information granules. Thus, we can quantify the model output representing information granules. Granular models offer a new performance evaluation method of system modeling by designing models at the level of information granules. For this, we deal with a synthesis function approximation and nonlinear regression and demonstrate the effectiveness of the proposed performance evaluation in the design of granular model.

      더보기

      참고문헌 (Reference)

      1 이명원, "인간 중심형 시스템 및 컴퓨팅을 위한 점진적인 방사기저함수 네트워크의 설계" 한국정보기술학회 10 (10): 137-142, 2012

      2 W. Pedrycz, "The design of free structure granular mapping : The use of the principle of justifiable granularity" 43 (43): 2105-2113, 2013

      3 C. U. Yeom, "Performance index method of granular model based on information granules" 220-221, 2016

      4 W. Pedrycz, "Linguistic models and linguistic modeling" 29 (29): 601-612, 1998

      5 W. Pedrycz, "Handbook of Granular Computing" John Wiley & Sons 2008

      6 O. F. Reyes-Galaviz, "Granular fuzzy models : analysis, design, and evaluation" 64 : 1-19, 2015

      7 S. S. Kim, "Development of quantum-based adaptive neuro-fuzzy networks" 40 (40): 91-100, 2010

      8 W. Pedrycz, "Designing fuzzy sets with the use of the parametric principle of justifiable granularity" 24 (24): 489-496, 2016

      9 W. Pedrycz, "Conditional fuzzy c-means" 17 (17): 625-631, 1996

      10 곽근창, "A Design of Granular Model Using Conditional Clustering and Density Peaks" 한국정보기술학회 13 (13): 127-134, 2015

      1 이명원, "인간 중심형 시스템 및 컴퓨팅을 위한 점진적인 방사기저함수 네트워크의 설계" 한국정보기술학회 10 (10): 137-142, 2012

      2 W. Pedrycz, "The design of free structure granular mapping : The use of the principle of justifiable granularity" 43 (43): 2105-2113, 2013

      3 C. U. Yeom, "Performance index method of granular model based on information granules" 220-221, 2016

      4 W. Pedrycz, "Linguistic models and linguistic modeling" 29 (29): 601-612, 1998

      5 W. Pedrycz, "Handbook of Granular Computing" John Wiley & Sons 2008

      6 O. F. Reyes-Galaviz, "Granular fuzzy models : analysis, design, and evaluation" 64 : 1-19, 2015

      7 S. S. Kim, "Development of quantum-based adaptive neuro-fuzzy networks" 40 (40): 91-100, 2010

      8 W. Pedrycz, "Designing fuzzy sets with the use of the parametric principle of justifiable granularity" 24 (24): 489-496, 2016

      9 W. Pedrycz, "Conditional fuzzy c-means" 17 (17): 625-631, 1996

      10 곽근창, "A Design of Granular Model Using Conditional Clustering and Density Peaks" 한국정보기술학회 13 (13): 127-134, 2015

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2022 평가예정 재인증평가 신청대상 (재인증)
      2019-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2016-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2012-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2008-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2006-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.45 0.45 0.39
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.38 0.35 0.566 0.16
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼