RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재후보

      Development of a sandy soil water content monitoring system for greenhouses using Internet of Things

      한글로보기

      https://www.riss.kr/link?id=A108884533

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Precision water management is crucial for greenhouse agriculture to maximize crop yields in sandy soil. Due to the low water holding capacity, it is necessary to monitor the water movement in different depths of sandy soil to ensure effective irrigati...

      Precision water management is crucial for greenhouse agriculture to maximize crop yields in sandy soil. Due to the low water holding capacity, it is necessary to monitor the water movement in different depths of sandy soil to ensure effective irrigation. Therefore, this study aimed to develop a data acquisition (DAQ) system for sandy soil water content monitoring in an experimental soil bin inside a greenhouse, utilizing the capabilities of the Internet of Things (IoT). A drip irrigation system was implemented, arranged in four pipelines, spaced 60 cm apart, with drippers placed at 30 cm intervals along the pipeline. The overall system was installed in a sandy soil testing bin. A DAQ system was comprised of three basic units: sensor interfacing and circuit board, programming and sensor data acquisition, and data storage and monitoring. A microprocessor was used by interfacing a set of soil water content sensors, ambient temperature, and humidity sensors. The water content sensors were placed in the soil at different depths of 10, 20, 30, 40, and 50 cm, respectively. A microcontroller was used to collect and send the sensor data to monitor and store in memory. During the test, the maximum and minimum average of soil water content, ambient temperature, and humidity values were observed at 33.91±2.5 to 26.95±1.3%, 21.39±2.1 to 42.84±1.7°C, and 48.73±2.3 to 99.90±0.3%, respectively. The water content percentages were varied at different depths of sandy soil due to low water holding capacity. The developed automatic DAQ system would help with remote monitoring and control of greenhouse irrigation, considering the different crop characteristics and environmental conditions.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼