RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      온라인 문서 군집화에서 군집 수 결정 방법 = Determining the number of Clusters in On-Line Document Clustering Algorithm

      한글로보기

      https://www.riss.kr/link?id=A101434300

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법으로, 사람이 일일이 살펴보기 어려운 데이터를 분석해서 비슷한 성향을 가진 데이터들끼리 모은 여러 개의 군집들을 만들어 낸다. 온라인 문서 군집화는 검색 엔진을 통해 검색된 문서들을 대상으로 군집화를 실행하여 유사한 특성의 문서들을 묶어서 보여줌으로써 사용자의 검색 환경의 편의성을 증진시키는 것이 목적이다. 문서군집화는 사람의 개입이 없이 자동으로 이루어져야 하고, 군집화 결과에 영향을 미치는 군집의 개수 선정도 자동으로 이루어져야 한다. 또한, 온라인 시스템에서는 빠른 응답 시간을 보장하는 것이 중요하다. 본 논문에서는 기하학적인 정보를 이용하여 군집의 수를 결정하는 방법을 제안한다. 제안하는 방법은 군집의 중심을 저차원 평면에 사상하는 것과 사상된 군집 중심의 거리 정보를 이용하여 군집들을 병합하는 두 단계로 이루어져 있다. 제안하는 방법을 실데이터에 적용하여 실험한 결과 군집화 성능이 향상되고, 처리 시간도 온라인 환경에 적합한 것을 확인 할 수 있었다.
      번역하기

      군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법으로, 사람이 일일이 살펴보기 어려운 데이터를 분석해서 비슷한 성향을 가진 데이터들끼리 모...

      군집화는 주어진 데이터를 분할하여 데이터 속에 숨겨져 있는 의미를 자동으로 발견하는 방법으로, 사람이 일일이 살펴보기 어려운 데이터를 분석해서 비슷한 성향을 가진 데이터들끼리 모은 여러 개의 군집들을 만들어 낸다. 온라인 문서 군집화는 검색 엔진을 통해 검색된 문서들을 대상으로 군집화를 실행하여 유사한 특성의 문서들을 묶어서 보여줌으로써 사용자의 검색 환경의 편의성을 증진시키는 것이 목적이다. 문서군집화는 사람의 개입이 없이 자동으로 이루어져야 하고, 군집화 결과에 영향을 미치는 군집의 개수 선정도 자동으로 이루어져야 한다. 또한, 온라인 시스템에서는 빠른 응답 시간을 보장하는 것이 중요하다. 본 논문에서는 기하학적인 정보를 이용하여 군집의 수를 결정하는 방법을 제안한다. 제안하는 방법은 군집의 중심을 저차원 평면에 사상하는 것과 사상된 군집 중심의 거리 정보를 이용하여 군집들을 병합하는 두 단계로 이루어져 있다. 제안하는 방법을 실데이터에 적용하여 실험한 결과 군집화 성능이 향상되고, 처리 시간도 온라인 환경에 적합한 것을 확인 할 수 있었다.

      더보기

      다국어 초록 (Multilingual Abstract)

      Clustering is to divide given data and automatically find out the hidden meanings in the data. It analyzes data, which are difficult for people to check in detail, and then, makes several clusters consisting of data with similar characteristics. On-Line Document Clustering System, which makes a group of similar documents by use of results of the search engine, is aimed to increase the convenience of information retrieval area. Document clustering is automatically done without human interference, and the number of clusters, which affect the result of clustering, should be decided automatically too. Also, the one of the characteristics of an on-line system is guarantying fast response time. This paper proposed a method of determining the number of clusters automatically by geometrical information. The proposed method composed of two stages. In the first stage, centers of clusters are projected on the low-dimensional plane, and in the second stage, clusters are combined by use of distance of centers of clusters in the low-dimensional plane. As a result of experimenting this method with real data, it was found that clustering performance became better and the response time is suitable to on-line circumstance.
      번역하기

      Clustering is to divide given data and automatically find out the hidden meanings in the data. It analyzes data, which are difficult for people to check in detail, and then, makes several clusters consisting of data with similar characteristics. On-Li...

      Clustering is to divide given data and automatically find out the hidden meanings in the data. It analyzes data, which are difficult for people to check in detail, and then, makes several clusters consisting of data with similar characteristics. On-Line Document Clustering System, which makes a group of similar documents by use of results of the search engine, is aimed to increase the convenience of information retrieval area. Document clustering is automatically done without human interference, and the number of clusters, which affect the result of clustering, should be decided automatically too. Also, the one of the characteristics of an on-line system is guarantying fast response time. This paper proposed a method of determining the number of clusters automatically by geometrical information. The proposed method composed of two stages. In the first stage, centers of clusters are projected on the low-dimensional plane, and in the second stage, clusters are combined by use of distance of centers of clusters in the low-dimensional plane. As a result of experimenting this method with real data, it was found that clustering performance became better and the response time is suitable to on-line circumstance.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼