RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      초임계 CO<sub>2</sub> 발전용 파워터빈을 지지하는 틸팅패드 베어링의 열윤활 해석 및 패드 온도 측정 = Thermal Analysis and Temperature Measurement of Tilting Pad Bearings Supporting a Power Turbine for the Supercritical CO<sub>2</sub> Cycle Application

      한글로보기

      https://www.riss.kr/link?id=A106111886

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.
      번역하기

      This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved ...

      This paper presents the thermohydrodynamic analysis of tilting journal pad bearings supporting a power turbine rotor applied to a 250 kW super-critical $CO_2$ cycle. In the analysis, the generalized Reynolds equation and 3D energy equation are solved to predict oil film temperature and the 3D heat conduction equation is solved for pad temperature. The power turbine rotor is supported by two tilting pad bearings consisting of five pads with an oil supply block between the pads. Copper backing pads with higher thermal conductivity compared to steel backing pads are adopted to improve thermal management. The predicted maximum pad temperature is around $55^{\circ}C$ which is approximately $15^{\circ}C$ higher than oil supply temperature. In addition, the predicted minimum film thickness is 50 mm at a rotating speed of 5,000 rpm. These results indicate that there is no issue in the thermal behavior of the bearing. An operation test is performed with a power turbine module consisting of a power turbine, a reduction gear and a generator. Thermocouples are installed at the 75% position from the leading edge of the pad to monitor pad temperature. The power turbine uses compressed air at a temperature of $250^{\circ}C$ in its operation. The steady state pad temperatures measured in the test show good agreement with the predicted temperatures.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼