RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCI SCIE SCOPUS

      Iron content determines how space weathering flux variations affect lunar soils

      한글로보기

      https://www.riss.kr/link?id=A107446084

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      <P><B>Abstract</B></P> <P>Previous work has established that the solar wind and micrometeoroids produce spectral changes on airless silicate bodies. However, the relative importance of these two weathering agents, the timescales over which they operate, and how their effects depend on composition have not yet been well determined. To help address these questions we make use of the fact that solar wind and micrometeoroid fluxes vary with latitude on the Moon. Previous work has shown that this latitudinally varying flux leads to systematic latitudinal variations in the spectral properties of lunar soils. Here we find that the way in which a lunar soil's spectral properties vary with latitude is a function of its iron content, when we consider soils with 14–22 wt% FeO. In particular, a 50% reduction in flux corresponds to a significant increase in reflectance for 14 wt% FeO soils, while the same flux reduction on 21 wt% FeO soils is smaller by a factor of ~5, suggesting that this brightening effect saturates for high FeO soils. We propose that lower iron soils may not approach saturation because grains are destroyed or refreshed before sufficient nano- and micro-phase iron can accumulate on their rims. We compare our results to the spectral variations observed across the Reiner Gamma swirl, which lies on a high‑iron surface, and find it has anomalous brightness compared to our predictions. Swirls in Mare Marginis, which lie on a low iron surface, exhibit brightness differences that suggest reductions in solar wind flux between 20 and 40%. Our inferences suffer from the limited latitudinal extent of the maria and the convolution of micrometeoroid flux and solar wind flux changes with latitude. Superior constraints on how space weathering operates throughout the inner solar system would come from in situ measurements of the solar wind flux at lunar swirls.</P> <P><B>Highlights</B></P> <P> <UL> <LI> We find that the lunar maria brighten at higher latitudes, and the total brightening is a function of soil iron content. </LI> <LI> Above a soil iron content of ~21 wt% FeO, there is a negligible change in brightness with latitude. </LI> <LI> We use this finding to predict the brightness of the Reiner Gamma swirl, and find that it is anomalously bright. </LI> </UL> </P>
      번역하기

      <P><B>Abstract</B></P> <P>Previous work has established that the solar wind and micrometeoroids produce spectral changes on airless silicate bodies. However, the relative importance of these two weathering agents, the ti...

      <P><B>Abstract</B></P> <P>Previous work has established that the solar wind and micrometeoroids produce spectral changes on airless silicate bodies. However, the relative importance of these two weathering agents, the timescales over which they operate, and how their effects depend on composition have not yet been well determined. To help address these questions we make use of the fact that solar wind and micrometeoroid fluxes vary with latitude on the Moon. Previous work has shown that this latitudinally varying flux leads to systematic latitudinal variations in the spectral properties of lunar soils. Here we find that the way in which a lunar soil's spectral properties vary with latitude is a function of its iron content, when we consider soils with 14–22 wt% FeO. In particular, a 50% reduction in flux corresponds to a significant increase in reflectance for 14 wt% FeO soils, while the same flux reduction on 21 wt% FeO soils is smaller by a factor of ~5, suggesting that this brightening effect saturates for high FeO soils. We propose that lower iron soils may not approach saturation because grains are destroyed or refreshed before sufficient nano- and micro-phase iron can accumulate on their rims. We compare our results to the spectral variations observed across the Reiner Gamma swirl, which lies on a high‑iron surface, and find it has anomalous brightness compared to our predictions. Swirls in Mare Marginis, which lie on a low iron surface, exhibit brightness differences that suggest reductions in solar wind flux between 20 and 40%. Our inferences suffer from the limited latitudinal extent of the maria and the convolution of micrometeoroid flux and solar wind flux changes with latitude. Superior constraints on how space weathering operates throughout the inner solar system would come from in situ measurements of the solar wind flux at lunar swirls.</P> <P><B>Highlights</B></P> <P> <UL> <LI> We find that the lunar maria brighten at higher latitudes, and the total brightening is a function of soil iron content. </LI> <LI> Above a soil iron content of ~21 wt% FeO, there is a negligible change in brightness with latitude. </LI> <LI> We use this finding to predict the brightness of the Reiner Gamma swirl, and find that it is anomalously bright. </LI> </UL> </P>

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼