RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      천이 전달 모델을 사용한 익형 유동의 예측 성능 비교

      한글로보기

      https://www.riss.kr/link?id=A100026316

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Two-dimensional prediction capability of several analysis codes, such as XFOIL, MSES, and KFLOW, is compared and analyzed based on computational results of airfoil flows. To this end the transition transport equations are coupled with the Navier-Stokes equations for the prediction of the natural transition and the separation-induced transition. Experimental data of aerodynamic coefficients are used for comparison with numerical results for the transitional flows. Numerical predictions using the transition transport model show a good agreement with experimental data. Discrepancies have been found in the prediction of the pressure drag are mainly caused by the difference in the far-field circulation correction methods.
      번역하기

      Two-dimensional prediction capability of several analysis codes, such as XFOIL, MSES, and KFLOW, is compared and analyzed based on computational results of airfoil flows. To this end the transition transport equations are coupled with the Navier-Stoke...

      Two-dimensional prediction capability of several analysis codes, such as XFOIL, MSES, and KFLOW, is compared and analyzed based on computational results of airfoil flows. To this end the transition transport equations are coupled with the Navier-Stokes equations for the prediction of the natural transition and the separation-induced transition. Experimental data of aerodynamic coefficients are used for comparison with numerical results for the transitional flows. Numerical predictions using the transition transport model show a good agreement with experimental data. Discrepancies have been found in the prediction of the pressure drag are mainly caused by the difference in the far-field circulation correction methods.

      더보기

      참고문헌 (Reference)

      1 Drela, M, "XFOIL 6.94 User Guide"

      2 Drela, M., "Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils" 25 (25): 1347-1355, 1986

      3 Perraud, J., "Transport Aircraft Three-Dimensional High-Lift-Wing Numerical Transition Prediction" 45 (45): 1554-1563, 2008

      4 Smith, A.M.O., "Transition, Pressure Gradient and Stability Theory" 1956

      5 Menter, F.R, "Transition Modeling for General Purpose CFD Codes" 77 : 277-303, 2006

      6 van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method" 32 : 101-136, 1979

      7 Granville, P.S., "The Calculation of the Viscous Drag of Bodies of Revolution" AGARD 1953

      8 Pulliam, T.H., "Solution Methods In Computational Fluid Dynamics" NASA Ames Research Center 1992

      9 Cliquet, J., "New Development in Transition Computation in the elsA Navier-Stokes Solver" ODAS 2006

      10 Gregory, N., "Low-Speed Aerodynamic Characteristics of NACA0012 Airfoil Section, Including The Effects of Upper-Surface Roughness Simulation Hoar Frost" 1970

      1 Drela, M, "XFOIL 6.94 User Guide"

      2 Drela, M., "Viscous-Inviscid Analysis of Transonic and Low Reynolds Number Airfoils" 25 (25): 1347-1355, 1986

      3 Perraud, J., "Transport Aircraft Three-Dimensional High-Lift-Wing Numerical Transition Prediction" 45 (45): 1554-1563, 2008

      4 Smith, A.M.O., "Transition, Pressure Gradient and Stability Theory" 1956

      5 Menter, F.R, "Transition Modeling for General Purpose CFD Codes" 77 : 277-303, 2006

      6 van Leer, B., "Towards the Ultimate Conservative Difference Scheme, V. A Second Order Sequel to Godunov's Method" 32 : 101-136, 1979

      7 Granville, P.S., "The Calculation of the Viscous Drag of Bodies of Revolution" AGARD 1953

      8 Pulliam, T.H., "Solution Methods In Computational Fluid Dynamics" NASA Ames Research Center 1992

      9 Cliquet, J., "New Development in Transition Computation in the elsA Navier-Stokes Solver" ODAS 2006

      10 Gregory, N., "Low-Speed Aerodynamic Characteristics of NACA0012 Airfoil Section, Including The Effects of Upper-Surface Roughness Simulation Hoar Frost" 1970

      11 Drela, M., "Low Reynolds Number Aerodynamics" Springer-Verlag 1989

      12 Bertolotti, F.P., "Linear and Nonlinear Stability of Boundary Layer with Streamwise Varying Properties" Ohio State University 1991

      13 Lian, Y., "Laminar-Turbulent Transition of a Low Reynolds Number Rigid or Flexible Airfoil" 45 (45): 1501-1513, 2007

      14 Park, S.H., "Implementation of κ-ω Turbulence Models in an Implicit Multigrid Method" 42 (42): 1348-1357, 2004

      15 Langtry, R.B., "Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes" 47 (47): 2894-2096, 2009

      16 HerBert, T, "Boundary-Layer Transition-Analysis and Prediction Revisited" AIAA 1991

      17 Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes" 43 (43): 357-372, 1981

      18 Cliquet, J., "Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations" 46 (46): 1183-1190, 2008

      19 Hicks, R.M., "An Evaluation of Three Two-Dimensional Computational Fluid Dynamic Codes Including Low Reynolds Numbers and Transonic Mach Numbers" Ames Research Center 1991

      20 von Doenhoff, A.E., "Aerodynamic Characteristics of the NACA 747A315 and 747A415 Airfoils from tests in the NACA two-dimensional Low-Turbulence Pressure Tunnel" National Advisory Committee for Aeronautics. Langley Aeronautical Lab 1994

      21 Drela, M., "A User’s Guide to MSES 3.05"

      22 van Ingen, J., "A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Region" 1956

      23 Pulliam, T.H., "A Diagonal Form of an Implicit Approximate Factorization Algorithm" 39 : 347-363, 1981

      24 Langtry, R.B, "A Correlation-Based Transition Model using Local Variables for Unstructured Parallelized CFD codes" Univ. of Stuttgart 2006

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2027 평가예정 재인증평가 신청대상 (재인증)
      2021-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2018-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2015-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2011-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2005-06-16 학술지명변경 외국어명 : Jpurnal of Computatuonal Fluids Engineering -> Korean Society of Computatuonal Fluids Engineering KCI등재후보
      2005-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.2 0.2 0.19
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.16 0.15 0.405 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼