RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      가우시안 프로세스 회귀분석을 이용한 지하수 수질자료의 해석 = Applications of Gaussian Process Regression to Groundwater Quality Data

      한글로보기

      https://www.riss.kr/link?id=A103028734

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.
      번역하기

      Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicabili...

      Gaussian process regression (GPR) is proposed as a tool of long-term groundwater quality predictions. The major advantage of GPR is that both prediction and the prediction related uncertainty are provided simultaneously. To demonstrate the applicability of the proposed tool, GPR and a conventional non-parametric trend analysis tool are comparatively applied to synthetic examples. From the application, it has been found that GPR shows better performance compared to the conventional method, especially when the groundwater quality data shows typical non-linear trend. The GPR model is further employed to the long-term groundwater quality predictions based on the data from two domestically operated groundwater monitoring stations. From the applications, it has been shown that the model can make reasonable predictions for the majority of the linear trend cases with a few exceptions of severely non-Gaussian data. Furthermore, for the data shows non-linear trend, GPR with mean of second order equation is successfully applied.

      더보기

      참고문헌 (Reference)

      1 김규범, "국내 오염우려지역의 지하수 수질 추세 특성" 한국지반환경공학회 11 (11): 5-16, 2010

      2 Chapman, D., "Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring"

      3 Hirsch, R.M., "Techniques of trend analysis for monthly water-quality data" 18 : 107-121, 1982

      4 Grbi , R., "Stream water temperature prediction based on Gaussian process regression" 40 (40): 7407-7414, 2013

      5 Helsel, D.R., "Statistical methods in water resources: US Geological Survey Techniques of Water Resources Investigations, book 4" Geological Survey 2002

      6 Hirsch, R.M., "Selection of methods for the detection and estimation of trends in water quality" 27 (27): 803-813, 1991

      7 Ministry of Environment (Korea), "National Institute of Environmental Research (Korea), 2007-2013" National Groundwater Quality Monitoring Network 2013

      8 Sun, A.Y., "Monthly streamflow forecasting using Gaussian Process Regression" 511 : 72-81, 2014

      9 Murphy, K.P., "Machine Learning: a Probabilistic Perspective" The MIT Press 1067-, 2012

      10 Bazi, Y., "Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression" 50 (50): 2733-2743, 2012

      1 김규범, "국내 오염우려지역의 지하수 수질 추세 특성" 한국지반환경공학회 11 (11): 5-16, 2010

      2 Chapman, D., "Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring"

      3 Hirsch, R.M., "Techniques of trend analysis for monthly water-quality data" 18 : 107-121, 1982

      4 Grbi , R., "Stream water temperature prediction based on Gaussian process regression" 40 (40): 7407-7414, 2013

      5 Helsel, D.R., "Statistical methods in water resources: US Geological Survey Techniques of Water Resources Investigations, book 4" Geological Survey 2002

      6 Hirsch, R.M., "Selection of methods for the detection and estimation of trends in water quality" 27 (27): 803-813, 1991

      7 Ministry of Environment (Korea), "National Institute of Environmental Research (Korea), 2007-2013" National Groundwater Quality Monitoring Network 2013

      8 Sun, A.Y., "Monthly streamflow forecasting using Gaussian Process Regression" 511 : 72-81, 2014

      9 Murphy, K.P., "Machine Learning: a Probabilistic Perspective" The MIT Press 1067-, 2012

      10 Bazi, Y., "Improved Estimation of Water Chlorophyll Concentration With Semisupervised Gaussian Process Regression" 50 (50): 2733-2743, 2012

      11 Helsel, D.R., "Applicability of the t-Test for Detecting Trends in Water Quality Variables" 24 (24): 201-204, 1988

      12 Jarque, Carlos M., "A test for normality of observations and regression residuals" 55 (55): 163-172, 1987

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2006-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2003-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2002-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2000-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.3 0.3 0.35
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.35 0.36 0.568 0.05
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼