기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107349393
2010
-
500
학술저널
1837-1838(2쪽)
0
상세조회0
다운로드국문 초록 (Abstract)
기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서...
기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서는 이러한 어려움을 극복하기 위해 기존 Hierarchical clustering 중 Centroid Linkage 에 새로운 Algorithm 을 제안하여 보다 적은 메모리를 사용하고 빠르게 처리하는 방법을 제안하고자 한다.
수치등각사상의 Theodorsen방정식해법에 관한 연구
사회연결망 분석을 응용한 비즈니스 프로세스 자원의 업무 적합성 판단 기법