RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      Priority Queue 를 이용한 Hierarchical Clustering (Centroid Linkage) 성능 개선 = A Performance Improvement Study On Hierarchical Clustering (Centroid Linkage) Using A Priority Queue

      한글로보기

      https://www.riss.kr/link?id=A107349393

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서는 이러한 어려움을 극복하기 위해 기존 Hierarchical clustering 중 Centroid Linkage 에 새로운 Algorithm 을 제안하여 보다 적은 메모리를 사용하고 빠르게 처리하는 방법을 제안하고자 한다.
      번역하기

      기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서...

      기존 hierarchical clustering 은 Time complexity 와 space complexity 가 Large data set 을 clustering 하기에는 적당하지 못하며 이것을 일반 PC 의 메모리 내에서 해결하는데 어려움이 있다. 따라서 본 연구에서는 이러한 어려움을 극복하기 위해 기존 Hierarchical clustering 중 Centroid Linkage 에 새로운 Algorithm 을 제안하여 보다 적은 메모리를 사용하고 빠르게 처리하는 방법을 제안하고자 한다.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼