RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCOPUS SCIE

      Catalyst free rutile phase TiO2 nanorods as efficient hydrogen sensor with enhanced sensitivity and selectivity

      한글로보기

      https://www.riss.kr/link?id=A108281602

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Using a low-cost hydrothermal method, we demonstrated the fabrication of phase pure rutile phase high-density vertically aligned TiO2 nanorods-based catalyst-free hydrogen (H2) gas sensor. The synthesized TiO2 nanorods on FTO are decorated with the al...

      Using a low-cost hydrothermal method, we demonstrated the fabrication of phase pure rutile phase high-density vertically aligned TiO2 nanorods-based catalyst-free hydrogen (H2) gas sensor. The synthesized TiO2 nanorods on FTO are decorated with the aluminum interdigitated electrode pattern for electrical measurements. TiO2 nanorods-based hydrogen sensor showed the optimum response of ~53.18% at 150 ppm H2 concentration relative to air at 100 ◦C. The measured response and recovery time of TiO2 nanorods are 85 and 620 s, respectively. The TiO2 nanorods-based H2 gas sensor showed a relatively better response, good reproducibility, and stability at moderate temperatures, i.e., 50 and 100 ◦C. The electrochemical impedance measurements showed a small variation in the surface characteristics of TiO2 nanorods before and after exposing H2 gas. The carrier lifetime at 50 ◦C and 100 ◦C at 150 ppm are 5 μs and 3 μs, respectively. Interestingly, H2 selectivity is also observed against H2S, CO, and NH3 gases, suggesting that high-density vertically aligned TiO2 nanorods can be a good candidate for efficient hydrogen sensing at relatively low temperatures.

      더보기

      참고문헌 (Reference) 논문관계도

      1 Z. Q. Liu, "ZnCo2O4Quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts" 28 : 3777-3784, 2016

      2 C. E. Benouis, "The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films" 490 : 62-67, 2010

      3 A. Esfandiar, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing" 37 : 15423-15432, 2012

      4 V. Cretu, "Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications" 4 : 6527-6539, 2016

      5 Erdem Şennik, "Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor" Elsevier BV 35 (35): 4420-4427, 2010

      6 W. Ben, "Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO 2nanoparticles prepared by polyol method" 2017

      7 M. Kashif, "Structural and impedance spectroscopy study of Al-doped ZnO nanorods grown by sol-gel method" 29 : 131-135, 2012

      8 G. N. Chaudhari, "Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors" 115 : 297-302, 2006

      9 M. V. Nikolic, "Semiconductor gas sensors: materials, technology, design, and application" 20 : 1-31, 2020

      10 S. Dhall, "Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles" 42 : 8392-8398, 2017

      1 Z. Q. Liu, "ZnCo2O4Quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts" 28 : 3777-3784, 2016

      2 C. E. Benouis, "The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films" 490 : 62-67, 2010

      3 A. Esfandiar, "The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing" 37 : 15423-15432, 2012

      4 V. Cretu, "Synthesis, characterization and DFT studies of zinc-doped copper oxide nanocrystals for gas sensing applications" 4 : 6527-6539, 2016

      5 Erdem Şennik, "Synthesis of highly-ordered TiO2 nanotubes for a hydrogen sensor" Elsevier BV 35 (35): 4420-4427, 2010

      6 W. Ben, "Structural, optical properties, impedance spectroscopy studies and electrical conductivity of SnO 2nanoparticles prepared by polyol method" 2017

      7 M. Kashif, "Structural and impedance spectroscopy study of Al-doped ZnO nanorods grown by sol-gel method" 29 : 131-135, 2012

      8 G. N. Chaudhari, "Structural and gas sensing properties of nanocrystalline TiO2:WO3-based hydrogen sensors" 115 : 297-302, 2006

      9 M. V. Nikolic, "Semiconductor gas sensors: materials, technology, design, and application" 20 : 1-31, 2020

      10 S. Dhall, "Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure: role of Pt sputtered nanoparticles" 42 : 8392-8398, 2017

      11 Z. Li, "Resistive-type hydrogen gas sensor based on TiO2: a review" 43 : 21114-21132, 2018

      12 Z. Han, "Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection" 8 : 13169-13188, 2020

      13 Ding Wang, "Pd nanocrystal sensitization two-dimension porous TiO2 for instantaneous and high efficient H2 detection" Elsevier BV 597 : 29-38, 2021

      14 A.I. Ayesh, "Metal/metal-oxide nanoclusters for gas sensor applications" 2016 : 2016

      15 N.A. Al-Ahmadi, "Metal oxide semiconductor-based Schottky diodes: a review of recent advances" 7 : 2020

      16 Hui Li, "Mesoporous WO3-TiO2 heterojunction for a hydrogen gas sensor" Elsevier BV 341 : 130035-, 2021

      17 R. Jaisutti, "Low-temperature photochemically activated amorphous indium-gallium-zinc oxide for highly stable roomtemperature gas sensors" 8 : 20192-20199, 2016

      18 Ebtsam K. Alenezy, "Low-Temperature Hydrogen Sensor: Enhanced Performance Enabled through Photoactive Pd-Decorated TiO2 Colloidal Crystals" American Chemical Society (ACS) 5 (5): 3902-3914, 2020

      19 Hyeong Jin Yun, "Influence of Aspect Ratio of TiO2 Nanorods on the Photocatalytic Decomposition of Formic Acid" American Chemical Society (ACS) 113 (113): 3050-3055, 2009

      20 G. Zhao, "In situ growing doublelayer TiO2 nanorod arrays on new-type FTO electrodes for low-concentration NH3detection at room temperature" 12 : 8573-8582, 2020

      21 C. Liewhiran, "Improvement of flame-made ZnO nanoparticulate thick film morphology for ethanol sensing" 7 : 650-675, 2007

      22 M. Zhang, "Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor" 148 : 87-92, 2010

      23 Xiaoyan Zhou, "Improved hydrogen sensing of (004) oriented anatase TiO2 thin films through post annealing" Elsevier BV 44 (44): 20606-20615, 2019

      24 V. Balasubramani, "Impedance spectroscopy-based reduced graphene oxide-incorporated ZnO composite sensor for H2S investigations" 4 : 9976-9982, 2019

      25 J. Realpe, "Impedance analysis of TiO 2 nanoparticles prepared by green chemical" 11 : 737-744, 2018

      26 T. Gupta, "Hydrothermal synthesis of TiO 2 nanorods : formation chemistry, growth mechanism, and tailoring of surface properties for photocatalytic activities" 20 : 100428-, 2021

      27 O. K. Varghese, "Hydrogen sensing using titania nanotubes" 93 : 338-344, 2003

      28 N. Z. Al-hazeem, "Hydrogen gas sensor based on nanofibers TiO 2 -PVP thin film at room temperature prepared by electrospinning" 27 : 293-299, 2021

      29 C. Lu, "High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide" 140 : 109-115, 2009

      30 S. K. Hazra, "High sensitivity and fast response hydrogen sensors based on electrochemically etched porous titania thin films" 115 : 403-411, 2006

      31 C. Ling, "High hydrogen response of Pd/TiO2/SiO2/Si multilayers at room temperature" 205 : 255-260, 2014

      32 Y. K. Jun, "High H2 sensing behavior of TiO2 films formed by thermal oxidation" 107 : 264-270, 2005

      33 Y SHIMIZU, "H2 sensing performance of anodically oxidized TiO2 thin films equipped with Pd electrode" Elsevier BV 121 (121): 219-230, 2007

      34 S. K. Hazra, "Growth of titanium dioxide thin films via a metallurgical route and characterizations for chemical gas" 110 : 195-201, 2004

      35 Y. Jian, "Gas sensors based on chemi-resistive hybrid functional nanomaterials" 12 : 2020

      36 Y. Ye, "Functional mesoporous materials for energy applications: solar cells, fuel cells, and batteries" 5 : 4584-4605, 2013

      37 R. Malik, "Functional gas sensing nanomaterials: a panoramic view" 7 : 2020

      38 Subhanarayan Sahoo, "Frequency and temperature dependent electrical characteristics of CaTiO3 nano-ceramic prepared by high-energy ball milling" Tsinghua University Press 2 (2): 291-300, 2013

      39 J. A. Woo, "Fast response of hydrogen sensor using palladium nanocube-TiO2 nanofiber composites" 42 : 18754-18761, 2017

      40 A. Nikfarjam, "Fabrication of a highly sensitive single aligned TiO2 and gold nanoparticle embedded TiO2 nano-fiber gas sensor" 9 : 15662-15671, 2017

      41 V. S. Bhati, "Enhanced sensing performance of ZnO nanostructures-based gas sensors: a review" 6 : 46-62, 2020

      42 A. R. C. Bredar, "Electrochemical impedance spectroscopy of metal oxide electrodes for energy applications" 3 : 66-98, 2020

      43 M. Kumar, "Effect of Schottky barrier height on hydrogen gas sensitivity of metal/TiO2 nanoplates" 42 : 22082-22089, 2017

      44 T. Manovah David, "Effect of Ni, Pd, and Pt Nanoparticle Dispersion on Thick Films of TiO2 Nanotubes for Hydrogen Sensing: TEM and XPS Studies" American Chemical Society (ACS) 5 (5): 11352-11360, 2020

      45 Y. Chen, "Design and evaluation of Cu-modified ZnO microspheres as a high performance formaldehyde sensor based on density functional theory" 532 : 147446-, 2020

      46 S. Cao, "Dependence of exposed facet of Pd on photocatalytic H2-production activity" 6 : 6478-6487, 2018

      47 A. Ali Haidry, "Costeffective fabrication of polycrystalline TiO2 with tunable n/p response for selective hydrogen monitoring" 274 : 10-21, 2018

      48 Aschariya Prathan, "Controlled Structure and Growth Mechanism behind Hydrothermal Growth of TiO2 Nanorods" Springer Science and Business Media LLC 10 (10): 1-11, 2020

      49 P. K. Kannan, "An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles" 32 : 2800-2809, 2017

      50 H. Kim, "Amorphous Pd-assisted H2detection of ZnO nanorod gas sensor with enhanced sensitivity and stability" 262 : 460-468, 2018

      51 A. Goldoni, "Advanced promising routes of carbon/metal oxides hybrids in sensors: a review" 266 : 139-150, 2018

      52 I. A. Sahito, "Advanced hybrid functional materials for energy applications" 2018 : 1-2, 2018

      53 G. Editors, "A special issue on materials for chemical sensing and renewable energy:recent trends" 5 : 1-3, 2016

      54 Jaehyun Moon, "A physicochemical mechanism of chemical gas sensors using an AC analysis" Royal Society of Chemistry (RSC) 15 (15): 9361-, 2013

      55 Jinxin Cheng, "A computational study on the Pd-decorated ZnO nanocluster for H2 gas sensing: A comparison with experimental results" Elsevier BV 124 : 114237-, 2020

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼