<P><B>Abstract</B></P> <P>Novel polyurethane triblock copolymers comprising polycaprolactone diol (PCL), 1,6-hexamethylene diisocyanate (HMDI), and polyethylene glycol (PEG) were synthesized for use as gate dielectric fo...
http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
https://www.riss.kr/link?id=A107464576
2019
-
학술저널
460-464(5쪽)
0
상세조회0
다운로드다국어 초록 (Multilingual Abstract)
<P><B>Abstract</B></P> <P>Novel polyurethane triblock copolymers comprising polycaprolactone diol (PCL), 1,6-hexamethylene diisocyanate (HMDI), and polyethylene glycol (PEG) were synthesized for use as gate dielectric fo...
<P><B>Abstract</B></P> <P>Novel polyurethane triblock copolymers comprising polycaprolactone diol (PCL), 1,6-hexamethylene diisocyanate (HMDI), and polyethylene glycol (PEG) were synthesized for use as gate dielectric for organic thin-film transistors (OTFTs). Thin films of polyurethane gate dielectrics processed from solution exhibit excellent insulating properties (∼7×10<SUP>−7</SUP> A/cm<SUP>2</SUP> at 1V) as well as large areal capacitance (170nF/cm<SUP>2</SUP>) with film thickness of ∼50nm. OTFTs are fabricated with representative n-channel organic semiconductor (N,N′-ditridecylperylene-3,4,9,10-tetracarboxylic diimide; PTCDI-C13) using the developed gate dielectrics, and the resulting devices show decent electrical performance with negligible hysteresis at low operating voltage of 1V.</P>
Improved swelling behavior of Li ion batteries by microstructural engineering of anode