RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      휴리스틱에 의하여 개선된 반딧불이 알고리즘의 설계와 분석 = A Design and Analysis of Improved Firefly Algorithm Based on the Heuristic

      한글로보기

      https://www.riss.kr/link?id=A101434238

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      본 논문에서는 최근 Xin-She Yang에 의해 소개된 반딧불이 알고리즘(FA)에 휴리스틱을 적용하여 개선하는 방안을 제안한다. 또한 이를 위하여 기존의 FA를 이와 유사한 문제영역의 알고리즘인 Particle Swarm Optimization(PSO)와 정확도 측면, 수렴 시간 측면, 각 입자의 움직임 측면에서 비교 분석한다. 비교 실험 결과, FA의 정확도는 PSO보다 나쁘지 않았지만, 수렴 속도는 느린 것으로 나타났다. 본 논문은 이에 대한 직관적인 원인을 고찰하고, 이를 극복하기 위해, 기존의 FA에 부분 돌연변이 휴리스틱을 적용하여 개선된 FA(Improved FA)를 제안한다. 벤치마크 함수들을 최적화 하는 비교 실험 결과, 개선된 FA가 PSO와 기존의 FA보다 정확도와 수렴속도 측면에서 우수함을 보이고자 한다.
      번역하기

      본 논문에서는 최근 Xin-She Yang에 의해 소개된 반딧불이 알고리즘(FA)에 휴리스틱을 적용하여 개선하는 방안을 제안한다. 또한 이를 위하여 기존의 FA를 이와 유사한 문제영역의 알고리즘인 Par...

      본 논문에서는 최근 Xin-She Yang에 의해 소개된 반딧불이 알고리즘(FA)에 휴리스틱을 적용하여 개선하는 방안을 제안한다. 또한 이를 위하여 기존의 FA를 이와 유사한 문제영역의 알고리즘인 Particle Swarm Optimization(PSO)와 정확도 측면, 수렴 시간 측면, 각 입자의 움직임 측면에서 비교 분석한다. 비교 실험 결과, FA의 정확도는 PSO보다 나쁘지 않았지만, 수렴 속도는 느린 것으로 나타났다. 본 논문은 이에 대한 직관적인 원인을 고찰하고, 이를 극복하기 위해, 기존의 FA에 부분 돌연변이 휴리스틱을 적용하여 개선된 FA(Improved FA)를 제안한다. 벤치마크 함수들을 최적화 하는 비교 실험 결과, 개선된 FA가 PSO와 기존의 FA보다 정확도와 수렴속도 측면에서 우수함을 보이고자 한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.
      번역하기

      In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) whi...

      In this paper, we propose a method to improve the Firefly Algorithm(FA) introduced by Xin-She Yang, recently. We design and analyze the improved firefly algorithm based on the heuristic. We compare the FA with the Particle Swarm Optimization (PSO) which the problem domain is similar with the FA in terms of accuracy, algorithm convergence time, the motion of each particle. The compare experiments show that the accuracy of FA is not worse than PSO's, but the convergence time of FA is slower than PSO's. In this paper, we consider intuitive reasons of slow convergence time problem of FA, and propose the improved version of FA using a partial mutation heuristic based on the consideration. The experiments using benchmark functions show the accuracy and convergence time of the improved FA are better than them of PSO and original FA.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼