RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      얼굴 깊이 추정을 이용한 3차원 얼굴 생성 및 추적 방법 = A 3D Face Reconstruction and Tracking Method using the Estimated Depth Information

      한글로보기

      https://www.riss.kr/link?id=A101434236

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용하여 획득되기 때문에 얼굴의 3차원 정보를 얻기 위해서는 많은 비용이 요구된다. 본 논문에서는 일반적으로 손쉽게 얻을 수 있는 2차원의 얼굴 영상 시퀀스로부터 효과적으로 3차월 얼굴 형태를 추적하고 재구성하기 위한 3차원 Active Appearance Model (3D-AAM) 방법을 제안한다. 얼굴의 3차원 변화 정보를 추정하기 위해 학습 영상은 정면 얼굴 포즈로 다양한 얼굴 표정 변화를 포함한 영상과 표정 변화를 갖지 않으면서 서로 크게 다른 얼굴 포즈를 갖는 영상으로 구성한다. 입력 영상의 3차원 얼굴 변화를 추정하기 위해 먼저 서로 다른 포즈를 갖는 학습 영상으로부터 얼굴의 각 특징점(Land-mark)의 기하학적 변화를 이용하여 깊이 정보를 추정하고 추정된 특징점의 깊이 정보를 입력 영상의 2차원 얼굴 변화에 추가하여 최종적으로 입력 얼굴의 3차원 변화를 추정한다. 본 논문에서 제안된 방법은 얼굴의 다양한 표정 변화와 함께 3차원의 얼굴 포즈 변화를 포함한 실험 영상을 이용하여 기존의 AAM에 비해 효과적이면서 빠르게 입력 얼굴을 추적(Fitting)할 수 있으며 입력 영상의 정확한 3차원 얼굴 형태를 생성할 수 있음을 보였다.
      번역하기

      얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용...

      얼굴의 3차원 정보는 얼굴 인식이나 얼굴 합성, Human Computer Interaction (HCI) 등 다양한 분야에서 유용하게 이용될 수 있다. 그러나 일반적으로 3차원 정보는 3D 스캐너와 같은 고가의 장비를 이용하여 획득되기 때문에 얼굴의 3차원 정보를 얻기 위해서는 많은 비용이 요구된다. 본 논문에서는 일반적으로 손쉽게 얻을 수 있는 2차원의 얼굴 영상 시퀀스로부터 효과적으로 3차월 얼굴 형태를 추적하고 재구성하기 위한 3차원 Active Appearance Model (3D-AAM) 방법을 제안한다. 얼굴의 3차원 변화 정보를 추정하기 위해 학습 영상은 정면 얼굴 포즈로 다양한 얼굴 표정 변화를 포함한 영상과 표정 변화를 갖지 않으면서 서로 크게 다른 얼굴 포즈를 갖는 영상으로 구성한다. 입력 영상의 3차원 얼굴 변화를 추정하기 위해 먼저 서로 다른 포즈를 갖는 학습 영상으로부터 얼굴의 각 특징점(Land-mark)의 기하학적 변화를 이용하여 깊이 정보를 추정하고 추정된 특징점의 깊이 정보를 입력 영상의 2차원 얼굴 변화에 추가하여 최종적으로 입력 얼굴의 3차원 변화를 추정한다. 본 논문에서 제안된 방법은 얼굴의 다양한 표정 변화와 함께 3차원의 얼굴 포즈 변화를 포함한 실험 영상을 이용하여 기존의 AAM에 비해 효과적이면서 빠르게 입력 얼굴을 추적(Fitting)할 수 있으며 입력 영상의 정확한 3차원 얼굴 형태를 생성할 수 있음을 보였다.

      더보기

      다국어 초록 (Multilingual Abstract)

      A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.
      번역하기

      A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The tr...

      A 3D face shape derived from 2D images may be useful in many applications, such as face recognition, face synthesis and human computer interaction. To do this, we develop a fast 3D Active Appearance Model (3D-AAM) method using depth estimation. The training images include specific 3D face poses which are extremely different from one another. The landmark's depth information of landmarks is estimated from the training image sequence by using the approximated Jacobian matrix. It is added at the test phase to deal with the 3D pose variations of the input face. Our experimental results show that the proposed method can efficiently fit the face shape, including the variations of facial expressions and 3D pose variations, better than the typical AAM, and can estimate accurate 3D face shape from images.

      더보기

      동일학술지(권/호) 다른 논문

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼