RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      직교 기저함수 기반의 혼합 신경회로망 구조 = Structure of the Mixed Neural Networks Based On Orthogonal Basis Functions

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      국문 초록 (Abstract)

      웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 은닉층의 노드로 복합 구성한 구조를 제안하고자 한다. 제안한 구조의 특징은 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 신경회로망의 은닉층을 복합 구성하는 데 있다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정하는 초기 구조의 최적화를 도모하고자 한다.
      번역하기

      웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스...

      웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 은닉층의 노드로 복합 구성한 구조를 제안하고자 한다. 제안한 구조의 특징은 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 신경회로망의 은닉층을 복합 구성하는 데 있다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정하는 초기 구조의 최적화를 도모하고자 한다.

      더보기

      다국어 초록 (Multilingual Abstract)

      The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.
      번역하기

      The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When...

      The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼