RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      SCOPUS KCI등재

      다양한 센서 기반의 침입체 탐지, 분류 및 추적 알고리즘 개발

      한글로보기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Surveillance is one of the major applications in wireless sensor network areas, and it is important to detect, classify and localize the targets. In this paper, we divide the research into two sections: (1) detecting and classifying the targets and (2) localizing them. To detect and classify multiple moving targets, we use acoustic and seismic sensors, and we analyze raw data from the sensors in both time and frequency domains. In this process, we must decide which features are useful for the classification to improve the performance and make it work in real time. Thus, we exploit Weibull likelihood and short-time Fourier transform (STFT) to extract the features as a sampling method. Then, we implement a support vector machine (SVM) and a neural network to classify the type of targets based on those features. Using the suggested algorithms, the proposed classifiers provide more accurate performance than the method that analyzes the raw data from only the frequency or time domain. For localization, Gaussian Process Regression (GPR) is used to estimate the relative location that corresponds to the received signal strength indication (RSSI) data. We also demonstrate the simultaneous localization with the process of detection and classification in real time. Finally, experimental results validate the suggested algorithm.
      번역하기

      Surveillance is one of the major applications in wireless sensor network areas, and it is important to detect, classify and localize the targets. In this paper, we divide the research into two sections: (1) detecting and classifying the targets and (2...

      Surveillance is one of the major applications in wireless sensor network areas, and it is important to detect, classify and localize the targets. In this paper, we divide the research into two sections: (1) detecting and classifying the targets and (2) localizing them. To detect and classify multiple moving targets, we use acoustic and seismic sensors, and we analyze raw data from the sensors in both time and frequency domains. In this process, we must decide which features are useful for the classification to improve the performance and make it work in real time. Thus, we exploit Weibull likelihood and short-time Fourier transform (STFT) to extract the features as a sampling method. Then, we implement a support vector machine (SVM) and a neural network to classify the type of targets based on those features. Using the suggested algorithms, the proposed classifiers provide more accurate performance than the method that analyzes the raw data from only the frequency or time domain. For localization, Gaussian Process Regression (GPR) is used to estimate the relative location that corresponds to the received signal strength indication (RSSI) data. We also demonstrate the simultaneous localization with the process of detection and classification in real time. Finally, experimental results validate the suggested algorithm.

      더보기

      참고문헌 (Reference)

      1 A. Mainwaring, "Wireless sensor networks for habitat moni-toring" Acm 88-97, 2002

      2 G. Mao, "Wireless sensor network localization techniques" 51 (51): 2529-2553, 2007

      3 M. F. Duarte, "Vehicle classification in distributed sensor networks" 64 (64): 826-838, 2004

      4 A. Savvides, "The bits and flops of the N-hop multilateration primitive for node localization pro¬blems" 112-121, 2002

      5 L. M. Borges, "Survey on the characterization and classification of wireless sensor network applications" 16 (16): 1860-1890, 2014

      6 O. Kreibich, "Quality-based multiple-sensor fusion in an industrial wireless sensor network for MCM" 61 (61): 4903-4911, 2013

      7 T. Chen, "Multiple source of microseismic signal classification by adaptive short-time fourier transform method" 16 (16): 2015

      8 J. Kuruvilla, "Lung cancer classification using neural networks for CT images" 113 (113): 202-209, 2014

      9 S. Kumar, "Localization with RSSI values for wireless sensor networks: An artificial neural network approach" 2014

      10 M. Sugano, "Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard"

      1 A. Mainwaring, "Wireless sensor networks for habitat moni-toring" Acm 88-97, 2002

      2 G. Mao, "Wireless sensor network localization techniques" 51 (51): 2529-2553, 2007

      3 M. F. Duarte, "Vehicle classification in distributed sensor networks" 64 (64): 826-838, 2004

      4 A. Savvides, "The bits and flops of the N-hop multilateration primitive for node localization pro¬blems" 112-121, 2002

      5 L. M. Borges, "Survey on the characterization and classification of wireless sensor network applications" 16 (16): 1860-1890, 2014

      6 O. Kreibich, "Quality-based multiple-sensor fusion in an industrial wireless sensor network for MCM" 61 (61): 4903-4911, 2013

      7 T. Chen, "Multiple source of microseismic signal classification by adaptive short-time fourier transform method" 16 (16): 2015

      8 J. Kuruvilla, "Lung cancer classification using neural networks for CT images" 113 (113): 202-209, 2014

      9 S. Kumar, "Localization with RSSI values for wireless sensor networks: An artificial neural network approach" 2014

      10 M. Sugano, "Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard"

      11 J. Wan, "Hierarchical leak detection and localization method in natural gas pipeline monitoring sensor networks" 12 (12): 189-214, 2012

      12 C. E. Rasmussen, "Gaussian processes for machine learning"

      13 J. Caffery, "GPS-less low cost outdoor localization for very small devices" 7 (7): 28-34, 2000

      14 B. Waske, "Fusion of support vector machines for classification of multisensor data" 5 (5): 3858-3866, 2007

      15 M. Chen, "Enabling low bit-rate and reliable video surveillance over practical wireless sensor network" 65 (65): 287-300, 2013

      16 A. Savvides, "Dynamic finegrained localization in ad-hoc networks of sensors" ACM 166-179, 2001

      17 D. Gu, "Distributed regression over sensor networks: An support vector machine app-roach" IEEE 2008

      18 J. Saxe, "Deep neural network based malware detection using two dimensional binary pro¬gram features" IEEE 2015

      19 J. Altmanna, "Acoustic seismic detection and classification of military vehicles-developing tools for disarmament and peace-keeping" 63 (63): 1085-1107, 2002

      20 T. Kobayashi, "Acoustic feature extr¬action by statistics based local binary pattern for environ¬mental sound classification" IEEE 2014

      21 J. Lee, "Acoustic classification and tracking of multiple targets using wireless sensor net-works" 399-404, 2015

      22 J. Lloret, "A wireless sensor network for vineyard monitoring that uses image processing" 11 (11): 6165-6196, 2011

      23 I. Butun, "A survey of intrusion detection systems in wireless sensor networks" 16 (16): 266-282, 2013

      24 G. Song, "A mobile sensor network system for monitoring of unfriendly environments" 8 (8): 7259-7274, 2008

      25 J. Xiong, "A distance measurement wireless localization correction algorithm based on RSSI" IEEE 2 : 2014

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2011-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2009-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2008-01-02 학술지명변경 한글명 : 제어.자동화.시스템공학 논문지 -> 제어.로봇.시스템학회 논문지
      외국어명 : Journal of Control, Automation and Systems Engineering -> Journal of Institute of Control, Robotics and Systems
      KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2007-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2005-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2002-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      1999-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.69 0.69 0.55
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.45 0.39 0.509 0.14
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼