RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재

      천연가스 스파크점화 엔진 발전기에서의 에너지 손실 분석 = Analysis of Energy Losses in a Natural Gas Spark Ignition Engine for Power Generation

      한글로보기

      https://www.riss.kr/link?id=A107256265

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.
      번역하기

      Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a...

      Stoichiometric combustion in spark ignition (SI) engines has an advantage of meeting future stringent emission regulations. However, the drawback of the combustion is a lower thermal efficiency than that of lean burn. In this study, energy losses in a natural gas stoichiometric SI engine generator were analyzed to establish a strategy for improving the generating efficiency (GE). The energy losses were investigated based on dynamometer and load bank experiments. As the intake manifold pressure increased in the dynamometer experiment, the brake thermal efficiency (BTE) increased mainly due to the reduction in the pumping and mechanical losses. In the load bank experiment, the generating power and GE increased with the increased intake manifold pressure. The generating power and GE were lower than the brake power and BTE due to the cooling fan power and the losses in the generator.

      더보기

      참고문헌 (Reference)

      1 "World energy outlook 2018" International Energy Agency 2018

      2 J. Ulfvik, "SI Gas Engine : Evaluation of Engine Performance, Efficiency and Emissions Comparing Producer Gas and Natural Gas" 4 (4): 1202-1209, 2011

      3 G. Karavalakis, "Regulated, greenhouse gas, and particulate emissions from leanburn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions" 175 : 146-156, 2016

      4 T. Korakianitis, "Natural-gas fueled spark-ignition and compressionignition engine performance and emissions" 37 : 89-112, 2011

      5 P. Einewall, "Lean burn natural gas operation vs. stoichiometric operation with EGR and a three way catalyst" SAE

      6 H. Park, "Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations" 235 : 763-774, 2019

      7 S. L. Kokjohn, "Fuel reactivity controlled compression ignition : a pathway to controlled high-efficiency clean combustion" 12 (12): 209-226, 2011

      8 H. Park, "Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine" 194 : 186-198, 2019

      9 "Energy technology perspectives 2017" International Energy Agency 2017

      10 Z. G. Sun, "Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine" 40 : 126-130, 2008

      1 "World energy outlook 2018" International Energy Agency 2018

      2 J. Ulfvik, "SI Gas Engine : Evaluation of Engine Performance, Efficiency and Emissions Comparing Producer Gas and Natural Gas" 4 (4): 1202-1209, 2011

      3 G. Karavalakis, "Regulated, greenhouse gas, and particulate emissions from leanburn and stoichiometric natural gas heavy-duty vehicles on different fuel compositions" 175 : 146-156, 2016

      4 T. Korakianitis, "Natural-gas fueled spark-ignition and compressionignition engine performance and emissions" 37 : 89-112, 2011

      5 P. Einewall, "Lean burn natural gas operation vs. stoichiometric operation with EGR and a three way catalyst" SAE

      6 H. Park, "Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations" 235 : 763-774, 2019

      7 S. L. Kokjohn, "Fuel reactivity controlled compression ignition : a pathway to controlled high-efficiency clean combustion" 12 (12): 209-226, 2011

      8 H. Park, "Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine" 194 : 186-198, 2019

      9 "Energy technology perspectives 2017" International Energy Agency 2017

      10 Z. G. Sun, "Energy efficiency and economic feasibility analysis of cogeneration system driven by gas engine" 40 : 126-130, 2008

      11 윤성준, "CNG 대형엔진에서 이중 O2 센서를 활용한 피드백 제어를 통한 삼원촉매 정화효율 향상" 한국분무공학회 24 (24): 163-170, 2019

      12 I. Smith, "Achieving 0.02 g/bhp-hr NO x Emissions from a Heavy-Duty Stoichiometric Natural Gas Engine Equipped with Three-Way Catalyst" SAE 2017

      13 B. Yan, "A comparative study on the fuel economy improvement of a natural gas SI engine at the lean burn and the stoichiometric operation both with EGR under the premise of meeting EU6 emission legislation" SAE 2015

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2026 평가예정 재인증평가 신청대상 (재인증)
      2020-04-01 학회명변경 한글명 : 한국액체미립화학회 -> 한국분무공학회
      영문명 : 미등록 -> Institute for Liquid Atomization and Spray Systems-Korea
      KCI등재
      2020-01-01 평가 등재학술지 유지 (재인증) KCI등재
      2020-01-01 학술지명변경 한글명 : 한국액체미립화 학회지 -> 한국분무공학회지 KCI등재
      2017-01-01 평가 등재학술지 유지 (계속평가) KCI등재
      2013-01-01 평가 등재 1차 FAIL (등재유지) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2006-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2005-01-01 평가 등재후보 1차 FAIL (등재후보1차) KCI등재후보
      2004-01-01 평가 등재후보학술지 유지 (등재후보1차) KCI등재후보
      2002-01-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 0.54 0.54 0.4
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.34 0.3 0.487 0.11
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼