RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      KCI등재 SCIE SCOPUS

      Linear Quadratic Gaussian Optimization Approach for Signal-to-Noise Ratio Constrained Control over Network

      한글로보기

      https://www.riss.kr/link?id=A104905955

      • 0

        상세조회
      • 0

        다운로드
      서지정보 열기
      • 내보내기
      • 내책장담기
      • 공유하기
      • 오류접수

      부가정보

      다국어 초록 (Multilingual Abstract)

      The research area of control over networks has attracted great interest in recent years. Inserted in this research area is the study of control feedback limitations imposed by the presence of a communication channel. In this paper we analyze the fundamental limitations in control feedback stabilizability imposed by a class of Signal-to-Noise Ratio (SNR) constrained communication channels. We solve the SNR constrained control over network problem as a linear quadratic Gaussian (LQG) optimization with loop transfer recovery (LTR). If the communication channel is located on the feedback path then the LTR is said to be performed at the output. Vice versa, if the communication channel is on the control path, then the recovery is said to be performed at the input. In the present paper we address both cases, namely the LQG optimization with LTR at the output and the LQG optimization with LTR at the input to solve an LTI SNR constrained problem. We then explore the link between these two solutions.
      번역하기

      The research area of control over networks has attracted great interest in recent years. Inserted in this research area is the study of control feedback limitations imposed by the presence of a communication channel. In this paper we analyze the funda...

      The research area of control over networks has attracted great interest in recent years. Inserted in this research area is the study of control feedback limitations imposed by the presence of a communication channel. In this paper we analyze the fundamental limitations in control feedback stabilizability imposed by a class of Signal-to-Noise Ratio (SNR) constrained communication channels. We solve the SNR constrained control over network problem as a linear quadratic Gaussian (LQG) optimization with loop transfer recovery (LTR). If the communication channel is located on the feedback path then the LTR is said to be performed at the output. Vice versa, if the communication channel is on the control path, then the recovery is said to be performed at the input. In the present paper we address both cases, namely the LQG optimization with LTR at the output and the LQG optimization with LTR at the input to solve an LTI SNR constrained problem. We then explore the link between these two solutions.

      더보기

      참고문헌 (Reference)

      1 G. Stein, "The LQG/LTR procedure for multivariable feedback control design" 32 (32): 105-114, 1987

      2 G. N. Nair, "Stabilizability of stochastic linear systems with finite feedback data rates" 43 (43): 413-436, 2004

      3 P. Antsaklis, "Special issue on networked control systems" 49 (49): 2004

      4 K. Zhou, "Robust and Optimal Control" Prentice Hall 1996

      5 R.G.Gallager, "Principles of Digital Communication" Cambridge University Press 2008

      6 A. J. Rojas, "Output feedback stabilisation over bandwidth limited, signal to noise ratio constrained communication channels" 2789-2794, 2006

      7 A. J. Rojas, "Optimal signal to noise ratio in feedback over communication channels with memory" 1129-1134, 2006

      8 B. Anderson, "Optimal Filtering" Dover publications 2005

      9 A. Saberi, "Loop Transfer Recovery: Analysis and Design" Springer- Verlag 1993

      10 Z. Zhang, "Loop Transfer Recovery for Nonminimum Phase Plants and Ill-Conditioned Plants" The University of Michigan 1990

      1 G. Stein, "The LQG/LTR procedure for multivariable feedback control design" 32 (32): 105-114, 1987

      2 G. N. Nair, "Stabilizability of stochastic linear systems with finite feedback data rates" 43 (43): 413-436, 2004

      3 P. Antsaklis, "Special issue on networked control systems" 49 (49): 2004

      4 K. Zhou, "Robust and Optimal Control" Prentice Hall 1996

      5 R.G.Gallager, "Principles of Digital Communication" Cambridge University Press 2008

      6 A. J. Rojas, "Output feedback stabilisation over bandwidth limited, signal to noise ratio constrained communication channels" 2789-2794, 2006

      7 A. J. Rojas, "Optimal signal to noise ratio in feedback over communication channels with memory" 1129-1134, 2006

      8 B. Anderson, "Optimal Filtering" Dover publications 2005

      9 A. Saberi, "Loop Transfer Recovery: Analysis and Design" Springer- Verlag 1993

      10 Z. Zhang, "Loop Transfer Recovery for Nonminimum Phase Plants and Ill-Conditioned Plants" The University of Michigan 1990

      11 K.J.Åström, "Introduction to Stochastic Control Theory" Academic Press 1970

      12 A. J. Rojas, "Input disturbance rejection in channel signal-to-noise ratio constrained feedback control" 3100-3105, 2008

      13 A. J. Rojas, "Infimal feedback capacity for a class of additive coloured gaussian noise channels" 5173-5178, 2008

      14 J. H. Braslavsky, "Feedback stabilisation over signalto- noise ratio constrained channels" 52 (52): 1391-1403, 2007

      15 J. H. Braslavsky, "Feedback stabilisation over signalto- noise ratio constrained channels" 4903-4908, 2004

      16 G. N. Nair, "Feedback control under data rate constraints: an overview" 95 (95): 108-137, 2007

      17 A. J. Rojas, "Feedback Control over Signal to Noise Ratio Constrained Communication Channels" The University of Newcastle 2006

      18 U. Shaked, "Explicit solution to the singular discrete-time stationary linear filtering problem" 30 (30): 34-47, 1985

      19 T. M. Covers, "Elements of Information Theory" John Wiley & Sons 1991

      20 Z. Zhang, "Discrete-time loop transfer recovery for systems with Nonminimum phase zeros and time delays" 29 (29): 351-363, 1993

      21 M. Kinnaert, "Discrete-time LQG/LTR techniques for systems with time delays" 15 (15): 303-311, 1990

      22 J. S. Freudenberg, "Control over signal-to-noise ratio constrained channels: stabilization and performance" 191-196, 2005

      23 J. M. Maciejowski, "Asymptotic recovery for discrete-time systems" 30 (30): 602-605, 1985

      더보기

      동일학술지(권/호) 다른 논문

      동일학술지 더보기

      더보기

      분석정보

      View

      상세정보조회

      0

      Usage

      원문다운로드

      0

      대출신청

      0

      복사신청

      0

      EDDS신청

      0

      동일 주제 내 활용도 TOP

      더보기

      주제

      연도별 연구동향

      연도별 활용동향

      연관논문

      연구자 네트워크맵

      공동연구자 (7)

      유사연구자 (20) 활용도상위20명

      인용정보 인용지수 설명보기

      학술지 이력

      학술지 이력
      연월일 이력구분 이력상세 등재구분
      2023 평가예정 해외DB학술지평가 신청대상 (해외등재 학술지 평가)
      2020-01-01 평가 등재학술지 유지 (해외등재 학술지 평가) KCI등재
      2010-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2009-12-29 학회명변경 한글명 : 제어ㆍ로봇ㆍ시스템학회 -> 제어·로봇·시스템학회 KCI등재
      2008-01-01 평가 등재학술지 유지 (등재유지) KCI등재
      2007-10-29 학회명변경 한글명 : 제어ㆍ자동화ㆍ시스템공학회 -> 제어ㆍ로봇ㆍ시스템학회
      영문명 : The Institute Of Control, Automation, And Systems Engineers, Korea -> Institute of Control, Robotics and Systems
      KCI등재
      2005-01-01 평가 등재학술지 선정 (등재후보2차) KCI등재
      2004-01-01 평가 등재후보 1차 PASS (등재후보1차) KCI등재후보
      2002-07-01 평가 등재후보학술지 선정 (신규평가) KCI등재후보
      더보기

      학술지 인용정보

      학술지 인용정보
      기준연도 WOS-KCI 통합IF(2년) KCIF(2년) KCIF(3년)
      2016 1.35 0.6 1.07
      KCIF(4년) KCIF(5년) 중심성지수(3년) 즉시성지수
      0.88 0.73 0.388 0.04
      더보기

      이 자료와 함께 이용한 RISS 자료

      나만을 위한 추천자료

      해외이동버튼