1 Rosenfeld RM, "clinical practice guideline : otitis media with effusion(update)" 154 (154): S1-41, 2016
2 Anantharaman R, "Utilizing Mask R-CNN for detection and segmentation of oral diseases" 2197-2204, 2018
3 Demant MN, "Smartphone otoscopy by non-specialist health workers in rural Greenland : a cross-sectional study" 126 : 109628-, 2019
4 Myburgh HC, "Otitis media diagnosis for developing countries using tympanic membrane image-analysis" 5 : 156-160, 2016
5 Peng J, "Medical image segmentation with limited supervision : a review of deep network models" 9 : 36827-36851, 2021
6 He K, "Mask R-CNN" 2980-2988, 2017
7 Zhao C, "Lung nodule detection via 3D U-Net and contextual convolutional neural network" 356-361, 2018
8 Mulay S, "Liver segmentation from multimodal images using HED-Mask R-CNN" 68-75, 2019
9 Russell BC, "LabelMe : a database and web-based tool for image annotation" 77 (77): 157-173, 2008
10 Singh A, "Explainable deep learning models in medical image analysis" 6 (6): 52-, 2020
1 Rosenfeld RM, "clinical practice guideline : otitis media with effusion(update)" 154 (154): S1-41, 2016
2 Anantharaman R, "Utilizing Mask R-CNN for detection and segmentation of oral diseases" 2197-2204, 2018
3 Demant MN, "Smartphone otoscopy by non-specialist health workers in rural Greenland : a cross-sectional study" 126 : 109628-, 2019
4 Myburgh HC, "Otitis media diagnosis for developing countries using tympanic membrane image-analysis" 5 : 156-160, 2016
5 Peng J, "Medical image segmentation with limited supervision : a review of deep network models" 9 : 36827-36851, 2021
6 He K, "Mask R-CNN" 2980-2988, 2017
7 Zhao C, "Lung nodule detection via 3D U-Net and contextual convolutional neural network" 356-361, 2018
8 Mulay S, "Liver segmentation from multimodal images using HED-Mask R-CNN" 68-75, 2019
9 Russell BC, "LabelMe : a database and web-based tool for image annotation" 77 (77): 157-173, 2008
10 Singh A, "Explainable deep learning models in medical image analysis" 6 (6): 52-, 2020
11 Zeng X, "Efficient and accurate identification of ear diseases using an ensemble deep learning model" 11 (11): 10839-, 2021
12 Lee SH, "Effects of reactive oxygen species generation induced by Wonju City particulate matter on mitochondrial dysfunction in human middle ear cell" 28 (28): 49244-49257, 2021
13 Aggarwal R, "Diagnostic accuracy of deep learning in medical imaging : a systematic review and meta-analysis" 4 (4): 65-, 2021
14 Sanna M, "Color atlas of endo-otoscopy" 2017
15 Prajapati SA, "Classification of dental diseases using CNN and transfer learning" 70-74, 2017
16 Liu Y, "Automatic segmentation of cervical nuclei based on deep learning and a conditional random field" 6 : 53709-53721, 2018
17 Wang G, "Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks" Springer 10670-, 2017
18 Cha D, "Automated diagnosis of ear disease using ensemble deep learning with a big otoendoscopy image database" 45 : 606-614, 2019
19 Pichichero ME, "Assessing diagnostic accuracy and tympanocentesis skills in the management of otitis media" 155 (155): 1137-1142, 2001
20 Shu JH, "An improved mask R-CNN model for multiorgan segmentation" 2020 : 8351725-, 2020
21 Liu X, "A review of deep-learning-based medical image segmentation methods" 13 (13): 1224-, 2021
22 Joe H, "A newly designed tympanostomy stent with TiO2 coating to reduce Pseudomonas aeruginosa biofilm formation" 33 (33): 599-605, 2018